Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

BRAF Mutation Triggers Series of Cellular Transformations Leading to Colon Cancer

By BiotechDaily International staff writers
Posted on 23 Jul 2013
Cancer researchers have found that the activity of the protein encoded by the mutant BRAFV600E gene triggers a series of transformations (hyperplasia to adenoma to carcinoma) that convert normal cells in the colon into a precancerous and ultimately fully cancerous state.

The BRAF (v-Raf murine sarcoma viral oncogene homolog B1) gene encodes the protein serine/threonine-protein kinase B-Raf. About half of melanomas express the BRAFV600E mutation (at amino acid position number 600 on the B-Raf protein, the normal valine is replaced by glutamic acid). Inhibitors of B-Raf such as vemurafenib have been approved for the treatment of metastatic melanoma since August 2011. In addition to melanoma, this mutation has been widely observed in papillary thyroid carcinoma and colorectal cancer.

An international team of investigators performed genetic and functional analyses in mice that revealed a series of stage-specific molecular alterations driving different phases of tumor evolution and uncovered mechanisms underlying this stage specificity. They reported in the July 8, 2013, issue of the journal Cancer Cell that BRAFV600E expression was sufficient for hyperplasia induction, but later stage intensified MAPK (mitogen-activated protein kinase)-signaling was required to drive both tumor progression and activation of intrinsic tumor suppression.

"Understanding the genetic makeup of different colorectal cancer subtypes will guide therapeutic decision making in the future," said senior author Dr. Allan Bradley, head of the mouse genomics team at the Wellcome Trust Sanger Institute (Hinxton, United Kingdom). "Our ability to engineer specific genetic alterations in mice allows us to study the function of cancer genes and to model specific cancer subtypes at an organismal level. Such mouse models are also invaluable for testing anticancer drugs before using them in clinical trials.”

"Our approach encapsulates the aim of cancer genomics: to discover changes to DNA responsible for cancer development and pinpoint the "Achilles heels" of cancer in order to identify new treatments," said first author Dr. Roland Rad, professor of translational oncology at the Technical University of Munich (Germany). "Our studies in mice revealed how genes cooperate to cause a specific subset of colon cancers. We identified main players, the order in which they occur during tumor progression, and the molecular processes how they turn relatively benign cell growth into threatening cancers. Such processes are targets for new treatments."

Related Links:

Wellcome Trust Sanger Institute
Technical University of Munich



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.