Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PZ HTL SA

BRAF Mutation Triggers Series of Cellular Transformations Leading to Colon Cancer

By BiotechDaily International staff writers
Posted on 23 Jul 2013
Cancer researchers have found that the activity of the protein encoded by the mutant BRAFV600E gene triggers a series of transformations (hyperplasia to adenoma to carcinoma) that convert normal cells in the colon into a precancerous and ultimately fully cancerous state.

The BRAF (v-Raf murine sarcoma viral oncogene homolog B1) gene encodes the protein serine/threonine-protein kinase B-Raf. About half of melanomas express the BRAFV600E mutation (at amino acid position number 600 on the B-Raf protein, the normal valine is replaced by glutamic acid). Inhibitors of B-Raf such as vemurafenib have been approved for the treatment of metastatic melanoma since August 2011. In addition to melanoma, this mutation has been widely observed in papillary thyroid carcinoma and colorectal cancer.

An international team of investigators performed genetic and functional analyses in mice that revealed a series of stage-specific molecular alterations driving different phases of tumor evolution and uncovered mechanisms underlying this stage specificity. They reported in the July 8, 2013, issue of the journal Cancer Cell that BRAFV600E expression was sufficient for hyperplasia induction, but later stage intensified MAPK (mitogen-activated protein kinase)-signaling was required to drive both tumor progression and activation of intrinsic tumor suppression.

"Understanding the genetic makeup of different colorectal cancer subtypes will guide therapeutic decision making in the future," said senior author Dr. Allan Bradley, head of the mouse genomics team at the Wellcome Trust Sanger Institute (Hinxton, United Kingdom). "Our ability to engineer specific genetic alterations in mice allows us to study the function of cancer genes and to model specific cancer subtypes at an organismal level. Such mouse models are also invaluable for testing anticancer drugs before using them in clinical trials.”

"Our approach encapsulates the aim of cancer genomics: to discover changes to DNA responsible for cancer development and pinpoint the "Achilles heels" of cancer in order to identify new treatments," said first author Dr. Roland Rad, professor of translational oncology at the Technical University of Munich (Germany). "Our studies in mice revealed how genes cooperate to cause a specific subset of colon cancers. We identified main players, the order in which they occur during tumor progression, and the molecular processes how they turn relatively benign cell growth into threatening cancers. Such processes are targets for new treatments."

Related Links:

Wellcome Trust Sanger Institute
Technical University of Munich



SLAS - Society for Laboratory Automation and Screening
RANDOX LABORATORIES
BIOSIGMA S.R.L.
comments powered by Disqus

Channels

Drug Discovery

view channel

Omega 3 Found to Improve Behavior in Children with ADHD

Supplements of the fatty acids omega 3 and 6 can help children and adolescents who have a specific kind of have attention deficit hyperactivity disorder (ADHD). Moreover, these findings indicate that a customized cognitive training program can improve problem behavior in children with ADHD. Statistics show that 3%–6%... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Lab Technologies

view channel
Image: Mouse kidneys, liver, and pancreas imaged after treatment with a variety of protocols: a saline solution, Scale, SeeDB (see deep brain), CUBIC, and carotid body (CB) perfusion (which was used in this study) (Photo courtesy of RIKEN Quantitative Biology Center).

Nearly Transparent Mice Offers Potential of Whole-Organism Imaging

Japanese researchers have developed a method that combines tissue decolorization and light-sheet fluorescent microscopy to take extremely detailed images of the interior of individual organs and even entire... Read more

Business

view channel

Two Industry Partnerships Initiated to Fuel Neuroscience Research

Faster, more complex neural research is now attainable by combining technology from two research companies. Blackrock Microsystems, LLC (Salt Lake City, UT, USA), a developer of neuroscience research equipment, announced partnerships with two neuroscience research firms—PhenoSys, GmbH (Berlin, Germany) and NAN Instruments, Ltd.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.