Features | Partner Sites | Information | LinkXpress
Sign In
Demo Company

New Chemotherapeutic Approach Will Selectively Starve Cancer Cells

By BiotechDaily International staff writers
Posted on 21 Jul 2013
Blocking the activity of the enzyme eukaryotic elongation factor 2 kinase (eEF2K), which is found in cancer cells but not in normal cells, prevents tumors from adapting to nutrient deprivation and may represent a new chemotherapeutic approach.

The eEF2K enzyme is an essential factor for protein synthesis. It promotes the GTP-dependent translocation of the growing protein chain from the A-site to the P-site of the ribosome. This protein is completely inactivated by EF2 kinase phosphorylation.

EEF2K, which is activated by AMP-kinase (AMPK), has been shown to confer cell survival under acute nutrient depletion by blocking translation elongation. It is expressed in a number of tissues, including the liver, brain, and skeletal muscle. The net effect of AMPK activation is stimulation of hepatic fatty acid oxidation and ketogenesis, inhibition of cholesterol synthesis, lipogenesis, and triglyceride synthesis, inhibition of adipocyte lipolysis and lipogenesis, stimulation of skeletal muscle fatty acid oxidation and muscle glucose uptake, and modulation of insulin secretion by pancreatic beta cells.

Investigators at the University of Southampton (United Kingdom) reported in the May 23, 2013, issue of the journal Cell that tumor cells exploit the AMPK-eEF2K pathway to adapt to nutrient deprivation. Adaptation of cancer cells to nutrient withdrawal was found to be severely compromised in cells lacking eEF2K. Moreover, eEF2K knockdown restored sensitivity to acute nutrient deprivation in highly resistant human tumor cell lines. In vivo, overexpression of eEF2K rendered murine tumors remarkably resistant to caloric restriction. Expression of eEF2K strongly correlated with overall survival in human medulloblastoma and glioblastoma multiforme.

Contributing author Dr. Christopher G. Proud, professor of biological sciences at the University of Southampton said, "Cancer cells grow and divide much more rapidly than normal cells, meaning they have a much higher demand for and are often starved of, nutrients and oxygen. We have discovered that a cellular component, eEF2K, plays a critical role in allowing cancer cells to survive nutrient starvation, whilst normal, healthy cells do not usually require eEF2K in order to survive. Therefore, by blocking the function of eEF2K, we should be able to kill cancer cells, without harming normal, healthy cells in the process."

"Protein synthesis – the creation of proteins within cells –is a fundamental process that enables cells to grow, divide, and function," said Dr. Proud. "If it goes wrong, it can contribute to the development of cancer. We are interested in how defects in this process can cause cancers and other diseases."

Related Links:

University of Southampton


Drug Discovery

view channel
Image: Endoscopic image of a bowel section known as the sigmoid colon afflicted with ulcerative colitis. The internal surface of the colon is blotchy and broken in places (Photo courtesy of Wikimedia Commons).

Orally Delivered Curcumin-Loaded Microparticles Effectively Treat Mouse Model of Ulcerative Colitis

Microparticles (MPs) loaded with the efficient anti-inflammatory agent curcumin were found to effectively treat a mouse model of ulcerative colitis. Ulcerative colitis is a chronic relapsing disease... Read more

Lab Technologies

view channel

New Genomic Research Kit Simplifies Exome Studies

An exciting new tool is now available for biotech researchers working in the field of genomic analysis. The human exome is critical to our genetic make-up and is generally accepted as having the greatest influence on how the genetic blueprint is utilized. The exome is defined as all coding exons in the genome and is... Read more


view channel

Collaboration Agreement to Boost Discovery of Fully Human Antibodies for Therapeutic Use

The discovery of fully human antibodies for therapeutic use will be boosted by a recently announced collaboration between a major university research center and a dynamic biopharmaceutical development company. Regeneron Pharmaceuticals, Inc. (Tarrytown, New York, USA) and The Experimental Therapeutics Institute (ETI)... Read more


17 Oct 2015 - 21 Oct 2015
25 Oct 2015 - 29 Oct 2015
16 Nov 2015 - 19 Nov 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.