Features | Partner Sites | Information | LinkXpress
Sign In
Demo Company

Genetically Engineered Mouse Models That Closely Resemble Human Patients Enable More Relevant Cancer Drug Studies

By BiotechDaily International staff writers
Posted on 18 Jul 2013
Image: Ultrasound imaging of mouse tumor showing response to chemotherapy. The mouse model allowed researchers to derive a new biomarker of chemotherapy responsiveness (Photo courtesy of Perou Laboratory at the University of North Carolina).
Image: Ultrasound imaging of mouse tumor showing response to chemotherapy. The mouse model allowed researchers to derive a new biomarker of chemotherapy responsiveness (Photo courtesy of Perou Laboratory at the University of North Carolina).
The use of genetically engineered mouse models (GEMMs) as recipients for xenografts of various types of human tumors enables study of tumor growth in an animal system with intact immune system and identification of genetic signatures that can be used to predict the responsiveness of these tumors to drug treatment.

Investigators at the University of North Carolina (Chapel Hill, USA) reasoned that drug studies conducted using traditional mouse models, which lack functional immune systems, could produce misleading results. To evaluate this theory they examined the efficacy of four chemotherapeutic or targeted anticancer drugs, alone and in combination, using mouse models representing three distinct breast cancer subtypes: Basal-like (GEMM), Luminal B (GEMM), and Claudin-low (non-GEMM). Drugs tested as single agents included carboplatin, paclitaxel, erlotinib, and lapatinib. The investigators used RNA expression analysis to profile tumors in order to develop signatures that corresponded to treatment and response and then tested their predictive potential using human patient data.

Results published in the June 18, 2013, online edition of the journal Clinical Cancer Research revealed that while lapatinib alone exhibited exceptional efficacy in one model system, generally single-agent activity was modest, while some combination therapies were more active and life prolonging. Through analysis of RNA expression in this large set of chemotherapy-treated mouse tumors, a pair of gene expression signatures was identified that predicted pathological complete response to neoadjuvant anthracycline/taxane (doxorubicin/paclitaxel) therapy in human patients with breast cancer.

Results presented in this study showed that mouse-derived gene signatures could predict drug response even after accounting for common clinical variables and other predictive genomic signatures, suggesting that mice could be used to identify new biomarkers for human cancer patients. Senior author Dr. Charles Perou, professor of molecular oncology research at the University of North Carolina, said, “This is a wonderful example of how well chosen mouse models can inform a human disease state. In this case we used years of research to match the models to specific human subtypes, and then treated the animals with therapies identical to what human cancer patients are receiving. We were ultimately able to develop a biomarker of treatment response from the mouse that works in humans.”

Related Links:
University of North Carolina



view channel
Image: representation of a protein (blue), which contains three zinc fingers in complex with DNA (orange). The coordinating amino acid residues and zinc ions (green) are highlighted (Photo courtesy of Wikimedia Commons).

Molecular Sensors Generated by Synthetic Biology Technique Using Intein-Based Protein Splicing

Biotech researchers have used intein-based protein splicing to generate synthetic protein components that are able to detect specific DNA sequences and subsequently trigger a desired intracellular response... Read more

Drug Discovery

view channel
Image: Endoscopic image of a bowel section known as the sigmoid colon afflicted with ulcerative colitis. The internal surface of the colon is blotchy and broken in places (Photo courtesy of Wikimedia Commons).

Orally Delivered Curcumin-Loaded Microparticles Effectively Treat Mouse Model of Ulcerative Colitis

Microparticles (MPs) loaded with the efficient anti-inflammatory agent curcumin were found to effectively treat a mouse model of ulcerative colitis. Ulcerative colitis is a chronic relapsing disease... Read more


view channel

Collaboration Agreement to Boost Discovery of Fully Human Antibodies for Therapeutic Use

The discovery of fully human antibodies for therapeutic use will be boosted by a recently announced collaboration between a major university research center and a dynamic biopharmaceutical development company. Regeneron Pharmaceuticals, Inc. (Tarrytown, New York, USA) and The Experimental Therapeutics Institute (ETI)... Read more


17 Oct 2015 - 21 Oct 2015
25 Oct 2015 - 29 Oct 2015
16 Nov 2015 - 19 Nov 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.