Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
BioConferenceLive

Signaling Regulatory Protein Found That Mediates Metastasis of Human Colorectal Cancer Cells

By BiotechDaily International staff writers
Posted on 09 Jul 2013
The direct effect of the signaling regulatory protein km23-1 (also called DYNLRB1/mLC7-1/robl-1/Dnlc2a/DYRB1) on TGF-beta (transforming growth factor beta) defines its role in mediating the migration, invasion, and tumor growth of human colorectal carcinoma (CRC) cells.

TGF-beta acts as an antiproliferative factor in normal epithelial cells and at early stages of cancer development. However, when a cell is transformed into a cancer cell, parts of the TGF-beta signaling pathway are mutated, and TGF-beta no longer controls the cell. These cancer cells and surrounding stromal cells (fibroblasts) begin to proliferate. Both types of cell increase their production of TGF-beta. This TGF-beta acts on the surrounding stromal cells, immune cells, endothelial, and smooth muscle cells causing immunosuppression and angiogenesis, which makes the cancer more invasive.

Investigators at the Pennsylvania State College of Medicine (Hershey, USA) had previously described km23-1 as a novel modulator of the actin cytoskeleton that also regulated the Ras oncogene and mitogen-activated protein kinase activities in TGF-beta-sensitive epithelial cells.

In a new study, the investigators examined the functional role of this signaling regulatory protein in mediating the migration, invasion, and tumor growth of human CRC cells. Towards this end, they used small interfering RNA (siRNA) to deplete levels of km23-1 in cultures of human CRC cells.

They reported in the June 3, 2013, online edition of the journal PLOS ONE that depletion of km23-1 inhibited constitutive extracellular signal-regulated kinase (ERK) activation, as well as proinvasive ERK effector functions that included TGF-beta promoter transactivation, and TGF-beta secretion. In addition, knockdown of km23-1 reduced the paracrine effects of CRC cell-secreted factors in conditioned medium and in fibroblast co-cultures. Furthermore, km23-1 depletion in human CRC cells reduced cell migration and invasion, as well as expression of the ERK-regulated, metastasis-associated scaffold protein Ezrin. Km23-1 inhibition significantly suppressed tumor formation in an in vivo model system.

"The type of cell movement, or migration, has important implications with respect to the detection of tumor cells in the blood of cancer patients, as well as for the development of new treatments," said senior author Dr. Kathleen M. Mulder, professor of biochemistry and molecular biology at Pennsylvania State College of Medicine. "Km23-1 may be able to help in this process due to its role in the assembly of large groups of proteins favorable to cancer invasion. If we can block km23-1, we can stop the spread of colon cancer earlier, but we would also affect other important functions of the protein. In order to address this issue, we are now trying to find the specific partners of km23-1 that contribute to the invasion of the cancer cells. Then we can design more precise therapeutic agents that target critical regions of km23-1 rather than eliminating the entire protein."

Related Links:

Pennsylvania State College of Medicine




comments powered by Disqus

Channels

Drug Discovery

view channel
Image: Molecular rendering of the crystal structure of parkin (Photo courtesy of Wikimedia Commons).

Cinnamon Feeding Blocks Development of Parkinson's Disease in Mouse Model

A team of neurological researchers has identified a molecular mechanism by which cinnamon acts to protect neurons from damage caused by Parkinson's disease (PD) in a mouse model of the syndrome.... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel

Precise Ion Irradiation Dosing Method Developed for Cancer Therapy

Scientists are employing nuclear physics principles to provide more effective approaches to radiotherapy treatment for cancer patients. Radiation therapy using heavy ions is best suitable for cancer patients with tumors that are difficult to access, such as in the brain. These particles scarcely damage the penetrated... Read more

Business

view channel

Cancer Immunotherapy Sector Predicted to Surge to USD 9 Billion Across Major Pharma Through 2022

The immunotherapy market will experience substantial growth through 2022, increasing from USD 1.1 billion in 2012 to nearly USD 9 billion in 2022 (corresponding to 23.8% annual growth) in the United Kingdom, United States, France, Germany, Italy, Spain, and Japan, according to recent market research. This notable growth... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.