Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Usurping Host DNA Repair Mechanisms Enables Hepatitis B Virus to Evade Replication Inhibitors

By BiotechDaily International staff writers
Posted on 08 Jul 2013
Image: The interaction of HBV circular DNA with host UNG (uracil-DNA glycosylase), (Photo courtesy of Kanazawa University).
Image: The interaction of HBV circular DNA with host UNG (uracil-DNA glycosylase), (Photo courtesy of Kanazawa University).
A team of Japanese virologists used a duck hepatitis B virus (DHBV) model to examine the molecular pathways involved in maintaining the integrity of the virus' circular DNA (covalently closed circular DNA or cccDNA), which modulates the transition from an acute infection into a chronic disease.

The study focused on a group of enzymes called apolipoprotein B mRNA editing catalytic polypeptide (APOBEC) proteins. This family of proteins has been suggested to play an important role in innate antiviral immunity. Recently, antiviral cytidine deaminase APOBEC proteins were shown to generate uracil residues in the viral cytoplasmic nucleocapsid (NC) DNA (partially double-stranded DNA) through deamination, resulting in cytidine-to-uracil (C-to-U) hypermutation of the viral genome, which blocked viral replication. Of particular interest was the role of APOBEC3G, which had been found to interfere with HIV replication.

As uracil residues in human genomic DNA are removed by the enzyme uracil-DNA glycosylase (UNG), resulting in the creation of abasic sites that are repaired by downstream repair factors, investigators at the Kanazawa University Graduate School of Medical Science (Japan) used an avian counterpart for HBV—duck HBV (DHBV)—to investigate the affect of host UNG on viral hypermutation in cccDNA.

Results published in the May 16, 2013, online edition of the journal PLOS Pathogens revealed that the hepatitis virus was able to subvert host UNG to repair the hypermutation introduced by APOBEC3G. When UNG activity was inhibited, APOBEC3G-induced hypermutation of cccDNA was enhanced.

The investigators measured the replication ability of purified cccDNA and found that recloned cccDNA from cells expressed by both APOBEC3G and UNG inhibitor protein replicated less efficiently due to higher hypermutation rates.

Transfection experiments showed that cccDNA hypermutation was enhanced by UNG inhibition in APOBEC3G expressing cells, resulting in a significant decrease in viral production. The investigators wrote that, “We speculate that the balance between APOBECs and UNG activities on mutation frequency decides the consequence to hepadnaviruses [the viral family that includes hepatitis B]: deleterious mutations vs. diversification.”

Future research will investigate the possible role of APOBECs and host factors such as UNG in the emergence of drug-resistant strains of HBV.

Related Links:
Kanazawa University Graduate School of Medical Science




comments powered by Disqus

Channels

Drug Discovery

view channel

Ibuprofen May Restore Immune Function in Older Individuals

New research suggests that macrophages from the lungs of old mice respond differently to infections than those of young mice, and ibuprofen given to the mice reversed these changes. New research using lab mice suggests that the solution to more youthful immune function might already be a common over-the-counter pain reliever.... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Lab Technologies

view channel
Image: Leica Microsystems launches the inverted research microscope platform Leica DMi8 (Photo courtesy of Leica Microsystems).

New Inverted Microscope Designed to Readily Adapt to Changing Research Demands

A new inverted microscope for biotech and other life science laboratories was designed to readily accommodate modifications and upgrades to allow it to keep current with changing research demands and interests.... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.