Features | Partner Sites | Information | LinkXpress
Sign In
BioConferenceLive
GLOBETECH PUBLISHING
JIB

New Anticancer Therapy to Target Cancer Cells' Elevated Need for Heme

By BiotechDaily International staff writers
Posted on 04 Jul 2013
Image: Space-filling model of heme (Photo courtesy of Wikimedia Commons).
Image: Space-filling model of heme (Photo courtesy of Wikimedia Commons).
Cancer cells have metabolic requirements that separate them from normal cells, and render them vulnerable to drugs that target these processes.

A recent study aimed to identify bioenergetic alterations in lung cancer cells by directly measuring and comparing key metabolic activities in a pair of cell lines representing normal and non-small-cell lung cancer (NSCLC) cells developed from the same patient. Lung cancer is the leading cause of cancer-related mortality in the US and worldwide and about 85% of the cases are NSCLC.

Investigators at the University of Texas (Dallas, USA) worked with a pair of cell lines representing normal nonmalignant HBEC (HBEC30KT) and NSCLC (HCC4017) cells developed from the same patient. They compared the metabolic and molecular profiles of this matched pair of cell lines grown under identical conditions.

Results published in the May 21, 2013, online edition of the journal PLOS ONE revealed that the rates of oxygen consumption and heme biosynthesis were intensified in NSCLC cells. Additionally, the NSCLC cells exhibited substantially increased levels of an array of proteins promoting heme synthesis, uptake, and function. The levels of oxygen-utilizing hemoproteins, such as cytoglobin, were dramatically increased in the cancer cells.

Inhibition of heme with succinyl acetone, a chemical that prevents cells from synthesizing heme, suppressed oxygen consumption, cancer cell proliferation, colony formation, and migration.

"Cancer cells not only make significantly more heme, we also found they uptake more heme from the blood," said senior author Dr. Li Zhang, professor of molecular and cell biology at the University of Texas. "All cells need a certain level of heme, but our findings indicate that normal cells need much less heme compared to cancer cells. We think a high level of heme in cancer cells results in a lot more hemoproteins, which metabolize oxygen and produce more cellular energy. That then drives the cancer cells to proliferate, to migrate, and to form colonies."

"When you inhibit heme synthesis or deplete heme, it does not affect normal cells too much," said Dr. Zhang. "It selectively affects cancer cells. That is the beauty of our work. Because inhibiting heme effectively arrested the progression of lung cancer cells, our findings could positively impact research on lung cancer biology and therapeutics."

Related Links:

University of Texas





comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The European Commission has approved the use of Avastin combined with chemotherapy as a treatment for women with recurrent ovarian cancer (Photo courtesy of Genentech).

Drug for Treatment of Platinum Resistant Recurrent Ovarian Cancer Approved for Use in Europe

For the first time in more than 15 years the European Commission (EC) has approved a new therapeutic option for the most difficult to treat form of ovarian cancer. Ovarian cancer causes more deaths... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel
Image: Neurons (greenish yellow) attach to silk-based scaffold (blue) creating functional networks throughout the scaffold pores (dark areas) (Photo courtesy of Tufts University).

Functional 3D Brain-Like Tissue Model Bioengineered

Researchers recently reported on the development of the first complex, three-dimensional (3D) model comprised of brain-like cortical tissue that displays biochemical and electrophysiologic responses, and... Read more

Business

view channel

Global Computational Biology Sector Expected to Reach over USD 4 Billion by 2020

The global market for computational biology is expected to reach USD 4.285 billion by 2020 growing at a compound annual growth rate (CAGR) of 21.1%, according to new market research. Steady surge in the usage and application of computational biology for bioinformatics R&D programs designed for sequencing genomes... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.