Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Novel Monoclonal Antibody Blocks Breast Cancer Metastasis in Mouse Model

By BiotechDaily International staff writers
Posted on 01 Jul 2013
Image: Metastasized human breast cancer cells (magnified 400 times, stained brown) in lymph nodes (Photo courtesy of the [US] National Cancer Institute).
Image: Metastasized human breast cancer cells (magnified 400 times, stained brown) in lymph nodes (Photo courtesy of the [US] National Cancer Institute).
A monoclonal antibody specific for the protein ROR1 (Receptor-tyrosine-kinase-like Orphan Receptor 1) was found to inhibit cell migration and invasion in cancer cell cultures and block tumor metastasis in a mouse breast cancel model.

Investigators at the University of California, San Diego (USA) had shown previously that ROR1, which is expressed during embryonic development and by various cancers, was not active in normal postpartum tissues. In the current study, which was published in the June 15, 2013, issue of the journal Cancer Research, the investigators linked expression of ROR1 to the process of epithelial-mesenchymal transition (EMT). EMT is a process by which epithelial cells lose their cell polarity and cell-cell adhesion, and gain migratory and invasive properties to become mesenchymal cells. EMT is essential for numerous developmental processes including mesoderm formation and neural tube formation. EMT has also been shown to occur in wound healing, in organ fibrosis, and in the initiation of metastasis for cancer progression.

The investigators found that breast adenocarcinomas expressing high levels of ROR1 were more likely to have gene expression signatures associated with EMT and had higher rates of relapse and metastasis than breast adenocarcinomas expressing low levels of ROR1. Suppressing expression of ROR1 in metastasis-prone breast cancer cell lines attenuated expression of proteins associated with EMT and impaired their capacity for migration and invasion in vitro and for metastasis in immunodeficient mice.

Treatment of a mouse breast-cancer model with a monoclonal antibody specific for ROR1 induced down modulation of EMT-promoting proteins and inhibited cancer cell migration and invasion in vitro and tumor metastasis in vivo. The investigators concluded that this finding indicated that antibodies targeting ROR1 could inhibit cancer progression and metastasis.

“We might think of ROR1 as an oncogene,” said first author Dr. Bing Cui, a postdoctoral researcher at the University of California, San Diego. “This means ROR1 has some tumor initiation functions. However, ROR1 also appears to allow transformed cells to invade other tissues and to promote tumor expansion in both the primary tumor site and in distant organs.”

Related Links:
University of California, San Diego


Channels

Drug Discovery

view channel
Image: Researchers have attached two drugs—TRAIL and Dox—onto graphene strips. TRAIL is most effective when delivered to the external membrane of a cancer cell, while Dox is most effective when delivered to the nucleus, so the researchers designed the system to deliver the drugs sequentially, with each drug hitting a cancer cell where it will do the most damage (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Anticancer Drug Delivery System Utilizes Graphene Strip Transporters

The ongoing search by cancer researchers for targeted drug delivery systems has generated a novel approach that uses graphene strips to transport simultaneously the anticancer agents TRAIL (tumor necrosis... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Biotech Acquisition Designed to Accelerate the Development and Marketing of Immunosequencing Applications

Adaptive Biotechnologies Corp. (Seattle, WA, USA), a developer of next-generation sequencing (NGS) to profile T-cell and B-cell receptors, has acquired of Sequenta, Inc. (South San Francisco, CA, USA), which is expected to expedite and expand the use of innovative immunosequencing technology for researchers and clinicians... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.