Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Some Anticancer Drugs Stop Working at a Hypoxia-Induced Phase Transition Point

By BiotechDaily International staff writers
Posted on 27 Jun 2013
Print article
By applying physical science analytical techniques and a basic understanding of the principles of thermodynamics to the problem of drug resistance in cancer cells with mTOR (mammalian target of rapamycin) mutations, cancer researchers identified a hypoxia-induced phase transition point at which mTOR suppressing drugs were no longer effective.

Hypoxia is a near-universal feature of solid tumors, promoting glycolysis, cellular proliferation, and angiogenesis. The molecular mechanisms of hypoxic signaling have been intensively studied, but the impact of changes in oxygen partial pressure (pO2) on the state of signaling networks is less clear. Similarly, it has been known that the behavior of mTOR signaling was influenced and altered by hypoxia, but the mechanism behind this was unknown.

Investigators at the Hebrew University of Jerusalem (Israel) and their colleagues at the California Institute of Technology (Pasadena, USA) and the University of California, Los Angeles (USA) worked with a glioblastoma multiforme (GBM) cancer cell model to examine the response of signaling networks to targeted pathway inhibition between 21% and 1% pO2 (oxygen partial pressure). For this study, they employed a microchip technology that facilitated quantification of a panel of functional proteins from statistical numbers of single cells. Results were interpreted using a set of theoretical tools derived from the physical sciences, which enabled the simplification of an otherwise complex biological system.

Results published in the April 9, 2013, issue of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) revealed that near 1.5% pO2, the mTOR signaling network - a critical component of hypoxic signaling and a compelling cancer drug target - was deregulated in a manner such that it became unresponsive to mTOR kinase inhibitors. While being unresponsive to mTOR kinase inhibitors near 1.5% pO2, cancer cells did respond at higher or lower pO2 values. These findings were validated through experiments on bulk GBM cell line cultures and on neurosphere cultures of a human-origin GBM xenograft tumor.

The investigators concluded that, "Our analysis—which may help explain the undistinguished performance of mTOR inhibitors in certain clinical trials—indicates that certain biologically complex cell behaviors may be understood using fundamental, thermodynamics-motivated principles."

Related Links:
Hebrew University of Jerusalem
California Institute of Technology
University of California, Los Angeles



Print article

Channels

Drug Discovery

view channel
Image: A scanning electron microscope (SEM) image of methicillin-resistant Staphylococcus aureus bacteria (Photo courtesy of the CDC).

Drug Combination Cures MRSA Infection While Preventing Development of Resistance

Treatment with a combination comprising the well-known antibiotic cefdinir and the experimental drug TXA709 cured mice of drug-resistant staphylococcal infections while reducing the development of resistance.... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel
Image: A three-dimensional printer adapted for stem cell production (Photo courtesy of Nano Dimension).

Israeli Developers Demonstrate Prototype Three-Dimensional Bioprinter

Two Israeli companies have combined efforts in the development of three-dimensional printer technology for the production of stem cells. The three-dimensional print electronics developer Nano Dimension... Read more

Business

view channel

Acquisition to Boost Development of Drugs for Neurogenic Conditions

According to a recent announcement, a privately held biotechnology/drug development company is to be acquired by one of the major pharmaceutical manufacturers. The drug manufacturer Merck & Co. (Kenilworth, NJ, USA) has agreed to pay 500 million USD up front for Afferent Pharmaceuticals (San Mateo, CA, USA) and up... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.