Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PURITAN MEDICAL

Gene Therapy Increases Survival in Huntington's Disease Animal Models

By BiotechDaily International staff writers
Posted on 27 Jun 2013
Gene therapy that suppressed formation of glial cells while promoting growth of neurons in the adult brain slowed development of neurodegenerative Huntington's disease in animal models.

Huntington’s disease (HD) is caused by a dominant gene that encodes the huntingtin protein. The 5' end of the HD gene has a sequence of three DNA bases, cytosine-adenine-guanine (CAG), coding for the amino acid glutamine, that is repeated multiple times. Normal persons have a CAG repeat count of between 7 and 35 repeats, while the mutated form of the gene has anywhere from 36 to 180 repeats. The mutant form of huntingtin is broken down into toxic peptides, which cause the loss of a type of brain cell called striatopallidal medium spiny projection neurons (MSNs). Destruction of these cells causes involuntary movements, problems with coordination, and, ultimately, in cognitive decline and depression. There is currently no treatment for this fatal disease.

Investigators at the University of Rochester Medical Center (NY, USA) and their colleagues at the University of Iowa (Iowa City, USA) initially worked with a Huntington's disease mouse model. They injected these animals with adeno-associated viruses (AAVs) modified to deliver the genes for the proteins BDNF (brain derived neurotrophic factor) or noggin. BDNF stimulates neural stem cells to produce neurons, while noggin inhibits the molecular pathway that induces formation of glial cells.

Results reported in the June 6, 2013, issue of the journal Cell Stem Cell revealed that a single injection of the adeno-associated viruses AAV4-BDNF and AAV4-noggin triggered the sustained recruitment of new MSNs in wild-type and R6/2 mice, a Huntington's disease model. Mice treated with AAV4-BDNF/noggin or with BDNF and noggin proteins actively recruited progenitor cells to form new MSNs that matured and achieved circuit integration. The AAV4-BDNF/noggin-treated R6/2 mice showed delayed deterioration of motor function and substantially increased survival.

In a follow-up set of experiments, squirrel monkeys that were given injections of adenoviral BDNF/noggin showed similar addition of striatal neurons.

"This study demonstrates the feasibility of a completely new concept to treat Huntington's disease, by recruiting the brain's endogenous neural stem cells to regenerate cells lost to the disease," said senior author Dr. Steve Goldman, professor of neurology at the University of Rochester Medical Center. "The sustained delivery of BDNF and noggin into the adult brain was clearly associated with both increased neurogenesis and delayed disease progression. We believe that our data suggest the feasibility of this process as a viable therapeutic strategy for Huntington's disease."

Related Links:
University of Rochester Medical Center
University of Iowa



Channels

Drug Discovery

view channel
Image: A new micelle delivery system for the protective polyphenols resveratrol and quercetin (mRQ) may have value in cancer chemotherapy (Photo courtesy of Oregon State University).

Micelles Containing Resveratrol and Quercetin Reverse Doxorubicin Cardiotoxicity

Cancer researchers blocked the toxic effects of the cancer drug doxorubicin (DOX) by administering it together with the plant antioxidants resveratrol and quercetin. Although in use for more than 40... Read more

Lab Technologies

view channel
Image: The Leica DM2500 LED Microscope for clinical laboratories and research applications (Photo courtesy of Leica Microsystems).

New LED Microscope Completes Line of Clinical and Research Tools

A popular microscope used for both clinical and research applications is now available with LED illumination. The Leica (Wetzlar, Germany) DM2500 and DM2500 LED microscopes represent a class of tools... Read more

Business

view channel

Teva Buys Allergan Generic Business Unit

Teva Pharmaceutical Industries (Petah Tikva, Israel) has bought the Allergan (Irvine, CA, USA) generic drugs business for USD 40.5 billion in cash and stock, solidifying its position as the world's largest generic drug maker. Under the terms of the agreement, Teva will pay USD 33.75 billion in cash and USD 6.... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.