Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
PZ HTL SA
GLOBETECH PUBLISHING

Tumors Benefit from Molecular Switch That Blocks T-cell Interferon Production

By BiotechDaily International staff writers
Posted on 26 Jun 2013
A molecular switch causes immune system T-cells to convert from oxidative phosphorylation (OXPHOS) to aerobic glycolysis, a change that inhibits the production of the inflammatory cytokine interferon gamma.

The move from OXPHOS to aerobic glycolysis is a hallmark of T-cell activation and was thought to be required to meet the metabolic demands of proliferation. However, why proliferating cells would adopt this less efficient way to produce energy, especially in an oxygen-rich environment, has been a mystery.

Investigators at the Washington University School of Medicine (St. Louis, MO, USA) studied the role of the known molecular switch GAPDH glyceraldehyde 3-phosphate dehydrogenase) in the conversion of T-cells from OXPHOS to aerobic glycolysis.

GAPDH is an enzyme of approximately 37 kDa that catalyzes the sixth step of glycolysis and thus serves to break down glucose for energy and carbon molecules. As its name indicates, GAPDH catalyzes the conversion of glyceraldehyde 3-phosphate to D-glycerate 1,3-bisphosphate. This conversion occurs in the cytosol of the cell in two coupled steps. The first is favorable and allows the second unfavorable step to occur. In addition to this long established metabolic function, GAPDH has recently been implicated in several nonmetabolic processes, including transcription activation, initiation of apoptosis, and ER to Golgi vesicle shuttling.

The investigators reported in the June 6, 2013, issue of the journal Cell that aerobic glycolysis was specifically required for effector function in T-cells but that this pathway was not necessary for proliferation or survival. When activated T-cells were provided with co-stimulation and growth factors but were blocked from engaging glycolysis, their ability to produce interferon gamma was markedly compromised. This defect was translational and was regulated by the binding of GAPDH to interferon gamma mRNA.

"The proteins involved in glycolysis do not just disappear when glycolysis is turned off—they are pretty stable proteins, so they can hang around in the cell and participate in other processes," said senior author Dr. Erika Pearce, assistant professor of pathology and immunology at the Washington University School of Medicine. "In T-cells this can be a problem since one of these proteins, GAPDH, can inhibit the production of interferon gamma. It is like an on-off switch, and all we need to do to flip it is change the availability of sugar. T-cells often can go everywhere—tumors, inflammation, infections—but sometimes they do not do anything. If we can confirm that this same switch is involved in these failures in the body, we might be able to find a way to put the fight back into those T-cells."

"T-cells can get into tumors, but unfortunately they are often ineffective at killing the cancer cells," said Dr. Pearce. "Lack of the ability to make interferon gamma could be one reason why they fail to kill tumors. By understanding more about how sugar metabolism affects interferon production, we may be able to develop treatments that fight tumors by enhancing T-cell function."

Related Links:
Washington University School of Medicine



Channels

Drug Discovery

view channel
Image: Chitosan is derived from the shells of shrimp and other sea crustaceans, including Alaskan pink shrimp, pictured here (Photo courtesy of NOAA - [US] National Oceanic and Atmospheric Administration).

Chitosan Treatment Clears the Way for Antibiotics to Eliminate Recurrent Urinary Tract Infections

Recurrent urinary tract infection was successfully resolved in a mouse model by treatment with the exfoliant chitosan followed by a round of antibiotics. Bacterial urinary tract infection (UTI), most... Read more

Biochemistry

view channel

Mitochondrial Cause of Aging Can Be Reversed

Researchers have found a cause of aging in lab animals that can be reversed, possibly providing an avenue for new treatments for age-related diseases including type 2 diabetes, cancer, muscle wasting, and inflammatory diseases. The researchers plan to begin human trials late 2014. The study, which was published December... Read more

Therapeutics

view channel

Cytokine Identified That Causes Mucositis in Cancer Therapy Patients

The action of the cytokine interleukin 1-beta (IL-1beta) has been found to underlie the onset of mucositis, a common, severe side effect of chemotherapy and irradiation of cancer patients. Mucositis occurs as a result of cell death in reaction to chemo- or radiotherapy. The mucosal lining of the mouth becomes thin, may... Read more

Lab Technologies

view channel
Image: Diagram of the apparatus for testing drug solubility (Photo courtesy of the University of Huddersfield).

Novel Apparatus Mimics the Human Digestive System for Oral Drug Studies

A team of British drug developers has created an instrument that mimics the human digestive system, which will allow them to accurately determine how orally-administered medications are dissolved and then absorbed.... Read more

Business

view channel

Analytical Sciences Trade Fair Declared a Rousing Success

Organizers of this year's 24th "analytica" biosciences trade fair have reported significant increases in both the number of visitors and exhibitors compared to the 2012 event. The analytica trade fair for laboratory technology, analysis, and biotechnology has been held at the Munich (Germany) Trade Fair Center every... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.