Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Tumors Benefit from Molecular Switch That Blocks T-cell Interferon Production

By BiotechDaily International staff writers
Posted on 26 Jun 2013
A molecular switch causes immune system T-cells to convert from oxidative phosphorylation (OXPHOS) to aerobic glycolysis, a change that inhibits the production of the inflammatory cytokine interferon gamma.

The move from OXPHOS to aerobic glycolysis is a hallmark of T-cell activation and was thought to be required to meet the metabolic demands of proliferation. However, why proliferating cells would adopt this less efficient way to produce energy, especially in an oxygen-rich environment, has been a mystery.

Investigators at the Washington University School of Medicine (St. Louis, MO, USA) studied the role of the known molecular switch GAPDH glyceraldehyde 3-phosphate dehydrogenase) in the conversion of T-cells from OXPHOS to aerobic glycolysis.

GAPDH is an enzyme of approximately 37 kDa that catalyzes the sixth step of glycolysis and thus serves to break down glucose for energy and carbon molecules. As its name indicates, GAPDH catalyzes the conversion of glyceraldehyde 3-phosphate to D-glycerate 1,3-bisphosphate. This conversion occurs in the cytosol of the cell in two coupled steps. The first is favorable and allows the second unfavorable step to occur. In addition to this long established metabolic function, GAPDH has recently been implicated in several nonmetabolic processes, including transcription activation, initiation of apoptosis, and ER to Golgi vesicle shuttling.

The investigators reported in the June 6, 2013, issue of the journal Cell that aerobic glycolysis was specifically required for effector function in T-cells but that this pathway was not necessary for proliferation or survival. When activated T-cells were provided with co-stimulation and growth factors but were blocked from engaging glycolysis, their ability to produce interferon gamma was markedly compromised. This defect was translational and was regulated by the binding of GAPDH to interferon gamma mRNA.

"The proteins involved in glycolysis do not just disappear when glycolysis is turned off—they are pretty stable proteins, so they can hang around in the cell and participate in other processes," said senior author Dr. Erika Pearce, assistant professor of pathology and immunology at the Washington University School of Medicine. "In T-cells this can be a problem since one of these proteins, GAPDH, can inhibit the production of interferon gamma. It is like an on-off switch, and all we need to do to flip it is change the availability of sugar. T-cells often can go everywhere—tumors, inflammation, infections—but sometimes they do not do anything. If we can confirm that this same switch is involved in these failures in the body, we might be able to find a way to put the fight back into those T-cells."

"T-cells can get into tumors, but unfortunately they are often ineffective at killing the cancer cells," said Dr. Pearce. "Lack of the ability to make interferon gamma could be one reason why they fail to kill tumors. By understanding more about how sugar metabolism affects interferon production, we may be able to develop treatments that fight tumors by enhancing T-cell function."

Related Links:
Washington University School of Medicine



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells (Photo courtesy of the University of Texas, Austin).

Experimental Drug Kills Cancer Cells by Interfering with Their Ion Transport Mechanism

An experimental anticancer drug induces cells to enter a molecular pathway leading to apoptosis by skewing their ion transport systems to greatly favor the influx of chloride anions. To promote development... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Lab Technologies

view channel

Genome-Wide Mutation-Searching Computational Software Designed for Genomic Medicine

Analysis software cross-references a patient’s symptoms with his genome sequence to help physicians in the diagnosis of disease. This software was created by a team of scientists from A*STAR’s Genome Institute of Singapore (GIS), led by Dr. Pauline Ng. The research findings were published August 3, 2014, in the journal... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.