Features Partner Sites Information LinkXpress
Sign In
Demo Company

A Global Alliance Established for Sharing Genomic Data

By BiotechDaily International staff writers
Posted on 24 Jun 2013
Print article
A shared framework for analyzing and distributing genomic information should soon speed medical progress and innovations.

Nearly 70 organizations in research, healthcare, and disease advocacy have agreed to take part in a global alliance focused on standardizing and sharing genomic and clinical data. “The cost of genome sequencing has fallen one-million fold in the past several years, fueling an explosion of information about the genetic basis of human health and disease,” wrote the authors of a white report announcing the alliance. In principle, this plethora of genome data could reveal the genetic basis of inherited and infectious disease, cancer, and drug responses. “However, we are not organized to seize this extraordinary opportunity.”

The problem is that the data are “collected and studied in silos: by disease, by institution, and by country,” reported the investigators. Tools and techniques for study are not standardized and can be incompatible. Furthermore, there are not agreed upon regulatory procedures that respect the privacy of people who have donated their genome sequences to research projects. All this “inhibits learning and improving healthcare,” they reported.

To address these problems, the alliance will develop international standards and infrastructure to share and integrate data in a controlled, secure, and interpretable way that upholds patient autonomy and right to privacy. Participants in the accord include the US National Institutes of Health (Bethesda, MD, USA), the Wellcome Trust Sanger Institute (Hinxton, Cambridgeshire, UK), and the Beijing Genomics institute (BGI; Beijing, China), as well as universities and hospitals.

The large pool of genomic sequences and medical data expected from the alliance is the sort of dataset required to determine the genetic basis of both cancer and rare diseases, recently reported an item in the New York Times. The mutations underlying these disorders are just too rare to be studied in data collected at a single institution.

A disease might occur in one in 1,000 or one in 100,000 babies, according to Dr. David Altshuler, deputy director and chief academic officer at the Broad Institute of Harvard University (Cambridge, MA, USA) and the Massachusetts Institute of Technology (MIT; Cambridge, MA, USA). A medical center might never see a child with that disease, or might see just one. “Since everyone sees zero or one, no one ever learns,” Dr. Altshuler said.

In spite of the commendable goals of the alliance, researchers may be reluctant to share hard-won genomic information, a “valuable commodity,” the researcher noted. A big question for the group is whether it can convince institutions to share their most meaningful data. “The mission is unquestionably worthy,” said cardiologist Dr. Eric Topol, director of the Scripps Translational Science Institute (La Jolla, CA, USA), which has not yet considered joining the alliance. But, he adds, “it means taking the walls down, and that’s tricky—because you’ve got each center wanting to hold on to its own data, and the loss of control is a very difficult concept.”

Related Links:
US National Institutes of Health
Wellcome Trust Sanger Institute
Massachusetts Institute of Technology

Print article



view channel
Image: Left: Green actin fibers create architecture of the cell. Right: With cytochalasin D added, actin fibers disband and reform in the nuclei (Photo courtesy of the University of North Carolina).

Actin in the Nucleus Triggers a Process That Directs Stem Cells to Mature into Bone

A team of cell biologists has discovered why treatment of mesenchymal stem cells (MSCs) with the mycotoxin cytochalasin D directs them to mature into bone cells (osteoblasts) rather than into fat cells... Read more


view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.