Features Partner Sites Information LinkXpress
Sign In
Demo Company

Immune System Regulator Allows Inflammatory Response While Preventing Autoimmune Attack

By BiotechDaily International staff writers
Posted on 18 Jun 2013
Print article
Image: Schematic of balance between tolerance and inflammation mediated by BACH2 (Photo courtesy of the US National Institutes of Health).
Image: Schematic of balance between tolerance and inflammation mediated by BACH2 (Photo courtesy of the US National Institutes of Health).
The BACH2 (BTB and CNC homology 1, basic leucine zipper transcription factor 2) gene was shown recently to encode for a protein that acts as a master immune system regulator by enabling inflammatory response to disease causing agents on the one hand and by preventing a hyper-inflammatory response and autoimmune attack on the other.

Genetic polymorphisms within a single locus encoding the BACH2 transcription factor are associated with numerous autoimmune and allergic diseases including asthma, Crohn’s disease, celiac disease, vitiligo, multiple sclerosis, and type I diabetes. The BACH2 protein is normally found on the surface of CD4+ T-cells. These cells play a dual role within the immune system with some populations of CD4+ T-cells activating immune responses, while others, regulatory T-cells (Tregs), function to limit immune responses. An in-depth study of how the BACH2 regulatory factor controls the balance between the two types of immune response was conducted by investigators at the [US] National Institutes of Health (Bethesda, MD, USA).

The investigators worked with a genetically engineered mouse line that permitted silencing or activation of BACH2. They found that the loss of the BACH2 gene in CD4+ T-cells caused them to become inflammatory, even in situations that would normally result in the formation of protective regulatory cells. Mice lacking the BACH2 gene generated large numbers of inflammatory cells, and the animals died of autoimmune diseases within the first few months of life. Insertion of the BACH2 gene via gene therapy into BACH2-deficient cells restored their ability to produce regulatory cells.

"Although genes have been found that play specific roles in either inflammatory cells or regulatory cells, BACH2 regulates the choice between the two cell types, resulting in its critical role in maintaining the immune system’s healthy balance," said senior author Dr. Nicholas P. Restifo, an investigator at the [US] National Institutes of Health. "It is apt that the gene shares its name with the famous composer Bach, since it orchestrates many components of the immune response, which, like the diverse instruments of an orchestra, must act in unison to achieve symphonic harmony."

The study was published in the June 2, 2013, online edition of the journal Nature.

Related Links:

[US] National Institutes of Health

Print article



view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more

Lab Technologies

view channel
Image: The new ambr 15 fermentation micro-bioreactor system was designed to enhance microbial strain screening applications (Photo courtesy of Sartorius Stedim Biotech).

New Bioreactor System Streamlines Strain Screening and Culture

Biotechnology laboratories working with bacterial cultures will benefit from a new automated micro bioreactor system that was designed to enhance microbial strain screening processes. The Sartorius... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.