Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Immune System Regulator Allows Inflammatory Response While Preventing Autoimmune Attack

By BiotechDaily International staff writers
Posted on 18 Jun 2013
Image: Schematic of balance between tolerance and inflammation mediated by BACH2 (Photo courtesy of the US National Institutes of Health).
Image: Schematic of balance between tolerance and inflammation mediated by BACH2 (Photo courtesy of the US National Institutes of Health).
The BACH2 (BTB and CNC homology 1, basic leucine zipper transcription factor 2) gene was shown recently to encode for a protein that acts as a master immune system regulator by enabling inflammatory response to disease causing agents on the one hand and by preventing a hyper-inflammatory response and autoimmune attack on the other.

Genetic polymorphisms within a single locus encoding the BACH2 transcription factor are associated with numerous autoimmune and allergic diseases including asthma, Crohn’s disease, celiac disease, vitiligo, multiple sclerosis, and type I diabetes. The BACH2 protein is normally found on the surface of CD4+ T-cells. These cells play a dual role within the immune system with some populations of CD4+ T-cells activating immune responses, while others, regulatory T-cells (Tregs), function to limit immune responses. An in-depth study of how the BACH2 regulatory factor controls the balance between the two types of immune response was conducted by investigators at the [US] National Institutes of Health (Bethesda, MD, USA).

The investigators worked with a genetically engineered mouse line that permitted silencing or activation of BACH2. They found that the loss of the BACH2 gene in CD4+ T-cells caused them to become inflammatory, even in situations that would normally result in the formation of protective regulatory cells. Mice lacking the BACH2 gene generated large numbers of inflammatory cells, and the animals died of autoimmune diseases within the first few months of life. Insertion of the BACH2 gene via gene therapy into BACH2-deficient cells restored their ability to produce regulatory cells.

"Although genes have been found that play specific roles in either inflammatory cells or regulatory cells, BACH2 regulates the choice between the two cell types, resulting in its critical role in maintaining the immune system’s healthy balance," said senior author Dr. Nicholas P. Restifo, an investigator at the [US] National Institutes of Health. "It is apt that the gene shares its name with the famous composer Bach, since it orchestrates many components of the immune response, which, like the diverse instruments of an orchestra, must act in unison to achieve symphonic harmony."

The study was published in the June 2, 2013, online edition of the journal Nature.

Related Links:

[US] National Institutes of Health



Channels

Drug Discovery

view channel
Image: Researchers have attached two drugs—TRAIL and Dox—onto graphene strips. TRAIL is most effective when delivered to the external membrane of a cancer cell, while Dox is most effective when delivered to the nucleus, so the researchers designed the system to deliver the drugs sequentially, with each drug hitting a cancer cell where it will do the most damage (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Anticancer Drug Delivery System Utilizes Graphene Strip Transporters

The ongoing search by cancer researchers for targeted drug delivery systems has generated a novel approach that uses graphene strips to transport simultaneously the anticancer agents TRAIL (tumor necrosis... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Biotech Acquisition Designed to Accelerate the Development and Marketing of Immunosequencing Applications

Adaptive Biotechnologies Corp. (Seattle, WA, USA), a developer of next-generation sequencing (NGS) to profile T-cell and B-cell receptors, has acquired of Sequenta, Inc. (South San Francisco, CA, USA), which is expected to expedite and expand the use of innovative immunosequencing technology for researchers and clinicians... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.