Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
PZ HTL SA
GLOBETECH PUBLISHING

Cell Surface Receptor Guides Liver Development

By BiotechDaily International staff writers
Posted on 18 Jun 2013
Identification of a growth factor that directs the differentiation of liver progenitor cells into mature liver cells may pave the way for development of laboratory-grown livers for use in organ transplants that will eliminate the need for living or deceased donors.

Investigators at Mount Sinai School of Medicine (New York, NY, USA) worked with mice and with samples taken from human fetal livers. They discovered that human embryonic stem cells could be differentiated into liver progenitor cells and produce mature liver cells as long at the cells expressed the cell surface growth factor KDR (kinase insert-domain receptor, also known as vascular endothelial growth factor receptor 2).

Vascular endothelial growth factor (VEGF) is a major growth factor for endothelial cells. The KDR gene encodes one of the two receptors of VEGF. This receptor, known as kinase insert-domain receptor, is a type III receptor tyrosine kinase. It functions as the main mediator of VEGF-induced endothelial proliferation, survival, migration, tubular morphogenesis, and sprouting. The signaling and trafficking of this receptor are regulated by multiple factors.

The investigators found that the newly differentiated liver cells were fully functional as demonstrated by their ability to be infected by the Hepatitis C virus, a property restricted to liver cells exclusively. KDR-positive progenitor cells were found in both human and mouse liver samples, indicating their importance in the formation of the organ.

"The discovery of the novel progenitor represents a fundamental advance in this field and potentially to the liver regeneration field using cell therapy," said senior author Dr. Valerie Gouon-Evans, assistant professor of developmental and regenerative biology at the Mount Sinai School of Medicine. "Until now, liver transplantation has been the most successful treatment for people with liver failure, but we have a drastic shortage of organs. This discovery may help circumvent that problem."

The study was published in the June 6, 2013, online issue of the journal Cell Stem Cell.

Related Links:

Mount Sinai School of Medicine



Channels

Drug Discovery

view channel

Retinoic Acid Prevents Precancerous Breast Cells from Progressing to Full-Blown Cancer

Retinoic acid, a derivative of vitamin A, was found to prevent pre-cancerous breast cells from progressing to full-blown cancer but did not have any effect on breast tumor cells. Investigators at Thomas Jefferson University (Philadelphia, PA, USA) worked with a novel breast cancer model that had been developed by treating... Read more

Biochemistry

view channel

Mitochondrial Cause of Aging Can Be Reversed

Researchers have found a cause of aging in lab animals that can be reversed, possibly providing an avenue for new treatments for age-related diseases including type 2 diabetes, cancer, muscle wasting, and inflammatory diseases. The researchers plan to begin human trials late 2014. The study, which was published December... Read more

Therapeutics

view channel

Cytokine Identified That Causes Mucositis in Cancer Therapy Patients

The action of the cytokine interleukin 1-beta (IL-1beta) has been found to underlie the onset of mucositis, a common, severe side effect of chemotherapy and irradiation of cancer patients. Mucositis occurs as a result of cell death in reaction to chemo- or radiotherapy. The mucosal lining of the mouth becomes thin, may... Read more

Business

view channel

Analytical Sciences Trade Fair Declared a Rousing Success

Organizers of this year's 24th "analytica" biosciences trade fair have reported significant increases in both the number of visitors and exhibitors compared to the 2012 event. The analytica trade fair for laboratory technology, analysis, and biotechnology has been held at the Munich (Germany) Trade Fair Center every... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.