Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Cell Surface Receptor Guides Liver Development

By BiotechDaily International staff writers
Posted on 18 Jun 2013
Identification of a growth factor that directs the differentiation of liver progenitor cells into mature liver cells may pave the way for development of laboratory-grown livers for use in organ transplants that will eliminate the need for living or deceased donors.

Investigators at Mount Sinai School of Medicine (New York, NY, USA) worked with mice and with samples taken from human fetal livers. They discovered that human embryonic stem cells could be differentiated into liver progenitor cells and produce mature liver cells as long at the cells expressed the cell surface growth factor KDR (kinase insert-domain receptor, also known as vascular endothelial growth factor receptor 2).

Vascular endothelial growth factor (VEGF) is a major growth factor for endothelial cells. The KDR gene encodes one of the two receptors of VEGF. This receptor, known as kinase insert-domain receptor, is a type III receptor tyrosine kinase. It functions as the main mediator of VEGF-induced endothelial proliferation, survival, migration, tubular morphogenesis, and sprouting. The signaling and trafficking of this receptor are regulated by multiple factors.

The investigators found that the newly differentiated liver cells were fully functional as demonstrated by their ability to be infected by the Hepatitis C virus, a property restricted to liver cells exclusively. KDR-positive progenitor cells were found in both human and mouse liver samples, indicating their importance in the formation of the organ.

"The discovery of the novel progenitor represents a fundamental advance in this field and potentially to the liver regeneration field using cell therapy," said senior author Dr. Valerie Gouon-Evans, assistant professor of developmental and regenerative biology at the Mount Sinai School of Medicine. "Until now, liver transplantation has been the most successful treatment for people with liver failure, but we have a drastic shortage of organs. This discovery may help circumvent that problem."

The study was published in the June 6, 2013, online issue of the journal Cell Stem Cell.

Related Links:

Mount Sinai School of Medicine



Channels

Drug Discovery

view channel
Image: Star-like glial cells in red surround alpha-beta plaques in the cortex of a mouse with a model of Alzheimer\'s disease (Photo courtesy of Strittmatter laboratory/Yale University).

Experimental Cancer Drug Reverses Symptoms in Mouse Model of Alzheimer's Disease

An experimental, but clinically disappointing drug for treatment of cancer has been found to be extremely effective in reversing the symptoms of Alzheimer's disease (AD) in a mouse model.... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.