Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Cell Surface Receptor Guides Liver Development

By BiotechDaily International staff writers
Posted on 18 Jun 2013
Identification of a growth factor that directs the differentiation of liver progenitor cells into mature liver cells may pave the way for development of laboratory-grown livers for use in organ transplants that will eliminate the need for living or deceased donors.

Investigators at Mount Sinai School of Medicine (New York, NY, USA) worked with mice and with samples taken from human fetal livers. They discovered that human embryonic stem cells could be differentiated into liver progenitor cells and produce mature liver cells as long at the cells expressed the cell surface growth factor KDR (kinase insert-domain receptor, also known as vascular endothelial growth factor receptor 2).

Vascular endothelial growth factor (VEGF) is a major growth factor for endothelial cells. The KDR gene encodes one of the two receptors of VEGF. This receptor, known as kinase insert-domain receptor, is a type III receptor tyrosine kinase. It functions as the main mediator of VEGF-induced endothelial proliferation, survival, migration, tubular morphogenesis, and sprouting. The signaling and trafficking of this receptor are regulated by multiple factors.

The investigators found that the newly differentiated liver cells were fully functional as demonstrated by their ability to be infected by the Hepatitis C virus, a property restricted to liver cells exclusively. KDR-positive progenitor cells were found in both human and mouse liver samples, indicating their importance in the formation of the organ.

"The discovery of the novel progenitor represents a fundamental advance in this field and potentially to the liver regeneration field using cell therapy," said senior author Dr. Valerie Gouon-Evans, assistant professor of developmental and regenerative biology at the Mount Sinai School of Medicine. "Until now, liver transplantation has been the most successful treatment for people with liver failure, but we have a drastic shortage of organs. This discovery may help circumvent that problem."

The study was published in the June 6, 2013, online issue of the journal Cell Stem Cell.

Related Links:

Mount Sinai School of Medicine



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: (Left) Neurons in brains from people with autism do not undergo normal pruning during childhood and adolescence. The images show representative neurons from unaffected brains (left) and brains from autistic patients (right); the spines on the neurons indicate the location of synapses (Photo courtesy of Guomei Tang, PhD and Mark S. Sonders, PhD, Columbia University Medical Center).

Autistic Youngsters Found to Have Too Many Brain Synapses

Autistic children and adolescents have been shown to have an excess of brain synapses, and this is due to a slowdown in the normal brain “trimming” process during development, according to new findings.... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Lab Technologies

view channel

Assessing Myeloma Progression Using Calcium Isotope Analysis

Scientists are revealing how an Earth science research principle can be used in biomedical situations to predict the development of disease. The researchers evaluated a new approach to detecting bone loss in cancer patients by using calcium isotope analysis to predict whether myeloma patients are at risk for developing... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.