Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Cell Surface Receptor Guides Liver Development

By BiotechDaily International staff writers
Posted on 18 Jun 2013
Identification of a growth factor that directs the differentiation of liver progenitor cells into mature liver cells may pave the way for development of laboratory-grown livers for use in organ transplants that will eliminate the need for living or deceased donors.

Investigators at Mount Sinai School of Medicine (New York, NY, USA) worked with mice and with samples taken from human fetal livers. They discovered that human embryonic stem cells could be differentiated into liver progenitor cells and produce mature liver cells as long at the cells expressed the cell surface growth factor KDR (kinase insert-domain receptor, also known as vascular endothelial growth factor receptor 2).

Vascular endothelial growth factor (VEGF) is a major growth factor for endothelial cells. The KDR gene encodes one of the two receptors of VEGF. This receptor, known as kinase insert-domain receptor, is a type III receptor tyrosine kinase. It functions as the main mediator of VEGF-induced endothelial proliferation, survival, migration, tubular morphogenesis, and sprouting. The signaling and trafficking of this receptor are regulated by multiple factors.

The investigators found that the newly differentiated liver cells were fully functional as demonstrated by their ability to be infected by the Hepatitis C virus, a property restricted to liver cells exclusively. KDR-positive progenitor cells were found in both human and mouse liver samples, indicating their importance in the formation of the organ.

"The discovery of the novel progenitor represents a fundamental advance in this field and potentially to the liver regeneration field using cell therapy," said senior author Dr. Valerie Gouon-Evans, assistant professor of developmental and regenerative biology at the Mount Sinai School of Medicine. "Until now, liver transplantation has been the most successful treatment for people with liver failure, but we have a drastic shortage of organs. This discovery may help circumvent that problem."

The study was published in the June 6, 2013, online issue of the journal Cell Stem Cell.

Related Links:

Mount Sinai School of Medicine



Channels

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.