Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Duchenne Muscular Dystrophy Treatable with Modified Gene Engineering Therapy

By BiotechDaily International staff writers
Posted on 17 Jun 2013
Image: The TALEN finds its target site in the human genome by binding to DNA, shown in green, with an engineered DNA-recognition protein, shown in orange. Once the protein finds its target site, the DNA is modified by the enzyme domain of the protein shown in blue (Photo courtesy of Dr. Charles Gersbach, Duke University).
Image: The TALEN finds its target site in the human genome by binding to DNA, shown in green, with an engineered DNA-recognition protein, shown in orange. Once the protein finds its target site, the DNA is modified by the enzyme domain of the protein shown in blue (Photo courtesy of Dr. Charles Gersbach, Duke University).
A team of biomedical engineers has demonstrated the potential for curing Duchenne muscular dystrophy (DMD) with modified gene editing therapy that does not require a DNA repair template.

DMD is caused by mutations in the gene that encodes the protein dystrophin and the subsequent disruption of the dystrophin-associated protein complex (DAPC). The mutation occurs on the X-chromosome, and the disease effects about one of every 3,500 boys whose muscle function is so degraded that they die usually before reaching the age of 30.

Having based their experiments on the premise that many genetic diseases could be treated simply by correcting a disrupted DNA reading frame, investigators at Duke University (Durham, NC, USA) recently reported that genome editing with transcription activator-like effector nucleases (TALENs), without a repair template, could efficiently correct the reading frame and restore the expression of a functional dystrophin protein.

Restriction enzymes are enzymes that cut DNA strands at a specific sequence. TALENs can be engineered to bind practically any desired DNA sequence, and by combining such an engineered TALEN with a DNA cleavage domain (which cuts DNA strands), one is able to engineer restriction enzymes that are specific for any desired DNA sequence. When these restriction enzymes are introduced into cells, they can be used for genome editing in situ, a technique known as genome editing with engineered nucleases.

The Duke University investigators engineered a TALEN gene to mediate highly efficient gene editing at exon 51 of the dystrophin gene. The gene was inserted into plasmids, and the plasmids were used to transfect target cells including skeletal myoblasts and dermal fibroblasts. The TALENs were then used to edit the genome by inducing double-strand breaks (DSB), to which the cells responded with repair mechanisms.

Results published in the June 4, 2013, online edition of the journal Molecular Therapy revealed that genome editing with TALENs, but without a repair template, could efficiently correct the reading frame and restore the expression of functional dystrophin protein that had been mutated in DMD.

"Conventional genetic approaches to treating the disease involve adding normal genes to compensate for the mutated genes," said senior author Dr. Charles Gersbach, assistant professor of biomedical engineering at Duke University. "However, this can cause other unforeseen problems, or the beneficial effect does not always last very long. Our approach actually repairs the faulty gene, which is a lot simpler. It finds the faulty gene and fixes it so it can start producing a functional protein again."

"Similar approaches could be helpful in treating other genetic diseases where a few gene mutations are responsible, such as sickle cell disease, hemophilia, or other muscular dystrophies," said Dr. Gersbach.

Related Links:
Duke University



Channels

Drug Discovery

view channel

Curcumin Used to Treat Alzheimer’s Disease

Curcumin, a natural substance found in the spice turmeric, has been used by many Asian cultures for centuries. Now, new research suggests that a close chemical analog of curcumin has properties that may make it useful as a treatment for Alzheimer’s disease. “Curcumin has demonstrated ability to enter the brain, bind... Read more

Biochemistry

view channel
Image: Induced pluripotent stem (iPS) cells, which act very much like embryonic stem cells, are shown growing into heart cells (blue) and nerve cells (green) (Photo courtesy of Gladstone Institutes/Chris Goodfellow).

Methodology Devised to Improve Stem Cell Reprogramming

In a study that provides scientists with a critical new determination of stem cell development and its role in disease, researchers have established a first-of-its-kind approach that outlines the stages... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.