Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Duchenne Muscular Dystrophy Treatable with Modified Gene Engineering Therapy

By BiotechDaily International staff writers
Posted on 17 Jun 2013
Image: The TALEN finds its target site in the human genome by binding to DNA, shown in green, with an engineered DNA-recognition protein, shown in orange. Once the protein finds its target site, the DNA is modified by the enzyme domain of the protein shown in blue (Photo courtesy of Dr. Charles Gersbach, Duke University).
Image: The TALEN finds its target site in the human genome by binding to DNA, shown in green, with an engineered DNA-recognition protein, shown in orange. Once the protein finds its target site, the DNA is modified by the enzyme domain of the protein shown in blue (Photo courtesy of Dr. Charles Gersbach, Duke University).
A team of biomedical engineers has demonstrated the potential for curing Duchenne muscular dystrophy (DMD) with modified gene editing therapy that does not require a DNA repair template.

DMD is caused by mutations in the gene that encodes the protein dystrophin and the subsequent disruption of the dystrophin-associated protein complex (DAPC). The mutation occurs on the X-chromosome, and the disease effects about one of every 3,500 boys whose muscle function is so degraded that they die usually before reaching the age of 30.

Having based their experiments on the premise that many genetic diseases could be treated simply by correcting a disrupted DNA reading frame, investigators at Duke University (Durham, NC, USA) recently reported that genome editing with transcription activator-like effector nucleases (TALENs), without a repair template, could efficiently correct the reading frame and restore the expression of a functional dystrophin protein.

Restriction enzymes are enzymes that cut DNA strands at a specific sequence. TALENs can be engineered to bind practically any desired DNA sequence, and by combining such an engineered TALEN with a DNA cleavage domain (which cuts DNA strands), one is able to engineer restriction enzymes that are specific for any desired DNA sequence. When these restriction enzymes are introduced into cells, they can be used for genome editing in situ, a technique known as genome editing with engineered nucleases.

The Duke University investigators engineered a TALEN gene to mediate highly efficient gene editing at exon 51 of the dystrophin gene. The gene was inserted into plasmids, and the plasmids were used to transfect target cells including skeletal myoblasts and dermal fibroblasts. The TALENs were then used to edit the genome by inducing double-strand breaks (DSB), to which the cells responded with repair mechanisms.

Results published in the June 4, 2013, online edition of the journal Molecular Therapy revealed that genome editing with TALENs, but without a repair template, could efficiently correct the reading frame and restore the expression of functional dystrophin protein that had been mutated in DMD.

"Conventional genetic approaches to treating the disease involve adding normal genes to compensate for the mutated genes," said senior author Dr. Charles Gersbach, assistant professor of biomedical engineering at Duke University. "However, this can cause other unforeseen problems, or the beneficial effect does not always last very long. Our approach actually repairs the faulty gene, which is a lot simpler. It finds the faulty gene and fixes it so it can start producing a functional protein again."

"Similar approaches could be helpful in treating other genetic diseases where a few gene mutations are responsible, such as sickle cell disease, hemophilia, or other muscular dystrophies," said Dr. Gersbach.

Related Links:
Duke University



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells (Photo courtesy of the University of Texas, Austin).

Experimental Drug Kills Cancer Cells by Interfering with Their Ion Transport Mechanism

An experimental anticancer drug induces cells to enter a molecular pathway leading to apoptosis by skewing their ion transport systems to greatly favor the influx of chloride anions. To promote development... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Lab Technologies

view channel

Genome-Wide Mutation-Searching Computational Software Designed for Genomic Medicine

Analysis software cross-references a patient’s symptoms with his genome sequence to help physicians in the diagnosis of disease. This software was created by a team of scientists from A*STAR’s Genome Institute of Singapore (GIS), led by Dr. Pauline Ng. The research findings were published August 3, 2014, in the journal... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.