Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

Duchenne Muscular Dystrophy Treatable with Modified Gene Engineering Therapy

By BiotechDaily International staff writers
Posted on 17 Jun 2013
Image: The TALEN finds its target site in the human genome by binding to DNA, shown in green, with an engineered DNA-recognition protein, shown in orange. Once the protein finds its target site, the DNA is modified by the enzyme domain of the protein shown in blue (Photo courtesy of Dr. Charles Gersbach, Duke University).
Image: The TALEN finds its target site in the human genome by binding to DNA, shown in green, with an engineered DNA-recognition protein, shown in orange. Once the protein finds its target site, the DNA is modified by the enzyme domain of the protein shown in blue (Photo courtesy of Dr. Charles Gersbach, Duke University).
A team of biomedical engineers has demonstrated the potential for curing Duchenne muscular dystrophy (DMD) with modified gene editing therapy that does not require a DNA repair template.

DMD is caused by mutations in the gene that encodes the protein dystrophin and the subsequent disruption of the dystrophin-associated protein complex (DAPC). The mutation occurs on the X-chromosome, and the disease effects about one of every 3,500 boys whose muscle function is so degraded that they die usually before reaching the age of 30.

Having based their experiments on the premise that many genetic diseases could be treated simply by correcting a disrupted DNA reading frame, investigators at Duke University (Durham, NC, USA) recently reported that genome editing with transcription activator-like effector nucleases (TALENs), without a repair template, could efficiently correct the reading frame and restore the expression of a functional dystrophin protein.

Restriction enzymes are enzymes that cut DNA strands at a specific sequence. TALENs can be engineered to bind practically any desired DNA sequence, and by combining such an engineered TALEN with a DNA cleavage domain (which cuts DNA strands), one is able to engineer restriction enzymes that are specific for any desired DNA sequence. When these restriction enzymes are introduced into cells, they can be used for genome editing in situ, a technique known as genome editing with engineered nucleases.

The Duke University investigators engineered a TALEN gene to mediate highly efficient gene editing at exon 51 of the dystrophin gene. The gene was inserted into plasmids, and the plasmids were used to transfect target cells including skeletal myoblasts and dermal fibroblasts. The TALENs were then used to edit the genome by inducing double-strand breaks (DSB), to which the cells responded with repair mechanisms.

Results published in the June 4, 2013, online edition of the journal Molecular Therapy revealed that genome editing with TALENs, but without a repair template, could efficiently correct the reading frame and restore the expression of functional dystrophin protein that had been mutated in DMD.

"Conventional genetic approaches to treating the disease involve adding normal genes to compensate for the mutated genes," said senior author Dr. Charles Gersbach, assistant professor of biomedical engineering at Duke University. "However, this can cause other unforeseen problems, or the beneficial effect does not always last very long. Our approach actually repairs the faulty gene, which is a lot simpler. It finds the faulty gene and fixes it so it can start producing a functional protein again."

"Similar approaches could be helpful in treating other genetic diseases where a few gene mutations are responsible, such as sickle cell disease, hemophilia, or other muscular dystrophies," said Dr. Gersbach.

Related Links:
Duke University



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.