Features | Partner Sites | Information | LinkXpress
Sign In
BioConferenceLive
JIB
GLOBETECH PUBLISHING

Macrophages Expressing a Modified Human Sodium Channel Protein Prevent or Reverse Multiple Sclerosis in a Mouse Model

By BiotechDaily International staff writers
Posted on 14 Jun 2013
Genetically engineered mouse macrophages expressing the human gene (SCN5A) that encodes the NaVI.5 (sodium channel, voltage-gated, type V, alpha subunit) sodium channel protein were used to demonstrate the potential use of these modified immune cells for the treatment of muscular sclerosis (MS).

NaVI.5 is an integral membrane protein and tetrodotoxin-resistant voltage-gated sodium channel subunit. This protein is found primarily in cardiac muscle and is responsible for the initial upstroke of the action potential in an electrocardiogram.

Investigators at the University of Wisconsin (Madison, USA) had shown previously that a splice variant of NaV1.5 was expressed intracellularly in human – but not mouse - macrophages, and that it regulated cellular signaling. The lack of this channel protein in mouse macrophages made it very difficult to study.

To counter this problem the investigators developed a novel transgenic mouse model (C57BL6c-fms-hSCN5A), in which the human macrophage NaV1.5 splice variant was expressed in vivo in mouse macrophages. They used these modified macrophages in studies carried out on mice with experimental autoimmune encephalomyelitis—a syndrome that closely mimics human muscular sclerosis.

Results published in the June 2013 issue of the Journal of Neuropathology and Experimental Neurology revealed that the mice expressing human NaV1.5 were protected from experimental autoimmune encephalomyelitis. The modified macrophages sought out the lesions caused by the disease and promoted recovery.

Mice with experimental autoimmune encephalomyelitis that lacked human NaV1.5 macrophages displayed symptoms of a chronic disease, which progressed from weakness of the back and front limbs to complete paralysis of the hind limbs. When macrophages expressing human NaV1.5 were transplanted into these mice, the animals regained the ability to walk. Mice treated with a placebo solution or normal mouse macrophages did not show any signs of recovery or became progressively more ill.

"This finding was unexpected because we were not sure how much damage they would do, versus how much cleaning up they would do,'' said senior author Dr. Michael Carrithers, assistant professor of neurology at the University of Wisconsin. "Some people thought the mice would get more ill, but we found that it protected them and they either had no disease or a very mild case."

The question remains as to why human NaV1.5 macrophages fail to protect humans from MS. "Why are these repair mechanisms deficient in patients with MS and what can we do to enhance them?'' asked Dr. Carrithers. "The long-range goal is to develop the NaV1.5 enhanced macrophages as a treatment for people with MS."


Related Links:

University of Wisconsin



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: Molecular rendering of the crystal structure of parkin (Photo courtesy of Wikimedia Commons).

Cinnamon Feeding Blocks Development of Parkinson's Disease in Mouse Model

A team of neurological researchers has identified a molecular mechanism by which cinnamon acts to protect neurons from damage caused by Parkinson's disease (PD) in a mouse model of the syndrome.... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel

Precise Ion Irradiation Dosing Method Developed for Cancer Therapy

Scientists are employing nuclear physics principles to provide more effective approaches to radiotherapy treatment for cancer patients. Radiation therapy using heavy ions is best suitable for cancer patients with tumors that are difficult to access, such as in the brain. These particles scarcely damage the penetrated... Read more

Business

view channel

Cancer Immunotherapy Sector Predicted to Surge to USD 9 Billion Across Major Pharma Through 2022

The immunotherapy market will experience substantial growth through 2022, increasing from USD 1.1 billion in 2012 to nearly USD 9 billion in 2022 (corresponding to 23.8% annual growth) in the United Kingdom, United States, France, Germany, Italy, Spain, and Japan, according to recent market research. This notable growth... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.