Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

CMV Infection Accelerates Tumor Growth in Mouse Brain Cancer Model

By BiotechDaily International staff writers
Posted on 14 Jun 2013
Results of a recently published study suggested that Cytomegalovirus (CMV) might significantly accelerate the development and progression of glioblastoma, a deadly form of brain cancer.

Investigators at Ohio State University (Columbus, USA) worked with a genetic mouse model of glioblastoma (Mut3 mice) that harbored genetic mutations in the p53 and NF1 tumor suppressor genes in their brain cells that predisposed them to spontaneous formation of glioblastomas. Some of these animals were infected perinatally with murine CMV (MCMV).

Results published in in the June 1, 2013, issue of the journal Cancer Research revealed that Mut3 mice infected with MCMV had shorter survival times than non-MCMV-infected mice. Implanting human glioblastomas into the brains of MCMV-infected animals significantly shortened their survival compared with uninfected animals. MCMV infection increased levels of activated STAT3 in neural stem cells, the cells in which glioblastomas are thought to originate.

Stat3 (signal transducer and activator of transcription-3) is a member of the Stat protein family, which regulates many aspects of cell growth, survival, and differentiation. Malfunction of this signaling pathway is frequently observed in primary tumors and leads to increased angiogenesis and enhanced tumor survival. Knockout studies have provided evidence that Stat proteins are involved in the development and function of the immune system and play a role in maintaining immune tolerance and tumor surveillance. Constitutive Stat3 activation is associated with various human cancers and commonly suggests poor prognosis. It has antiapoptotic as well as proliferative effects.

Results of another series of experiments revealed that human CMV increased STAT3 activation and proliferation of patient-derived glioblastoma cells and that a STAT3 inhibitor reversed this effect in cell and animal models.

"CMV has been detected in many cancer types, suggesting that it might be reactivated when cancer occurs in the body," said senior author Dr. Chang-Hyuk Kwon, assistant professor of neurological surgery at Ohio State University. "Our data indicate that CMV contributes to glioblastoma when already-mutated cancer cells proliferate using the STAT3 signaling pathway. We believe that CMV's action occurs in the tumor's cells of origin early in tumor initiation."

Related Links
:
Ohio State University


Channels

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.