Features | Partner Sites | Information | LinkXpress
Sign In
JIB
BioConferenceLive
GLOBETECH PUBLISHING

Intranasal Antibody Gene Transfer in Mice and Ferrets Protects Against Influenza Infection

By BiotechDaily International staff writers
Posted on 13 Jun 2013
Image
Image
Image: Senior author Dr. James M. Wilson (Photo courtesy of the University of Pennsylvania).
Image: Senior author Dr. James M. Wilson (Photo courtesy of the University of Pennsylvania).
Transmission of the influenza virus was blocked in animal models by a gene therapy technique that introduced a neutralizing antibody gene directly into the cells lining the nose and respiratory system.

Investigators at the University of Pennsylvania (Philadelphia, USA) worked with mouse and ferret influenza models. To protect these animals against influenza A infection the investigators used a modified adeno-associated virus (AAV) vector to deliver the gene that encodes the broadly neutralizing monoclonal anti-influenza antibody FI6 directly into the nasopharyngeal mucosa of the mice and ferrets.

Test animals were exposed to lethal quantities of three strains of influenza serotype H5N1 and two strains of serotype H1N1, all of which were associated with historic human pandemics (including the H1N1 1918 "Spanish flu" pandemic).

The investigators reported in the May 29, 2013, online edition of the journal Science Translational Medicine that intranasal delivery of the FI6 gene afforded complete protection against influenza infection in both the mouse and ferret model systems.

“The experiments described in our paper provide critical proof-of-concept in animals about a technology platform that can be deployed in the setting of virtually any pandemic or biological attack for which a neutralizing antibody exists or can be easily isolated,” said senior author Dr. James. M. Wilson, professor of pathology and laboratory medicine at the University of Pennsylvania. “Further development of this approach for pandemic flu has taken on more urgency in light of the spreading infection in China of the lethal bird strain of H7N9 virus in humans.”


Related Links:
University of Pennsylvania



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: Molecular rendering of the crystal structure of parkin (Photo courtesy of Wikimedia Commons).

Cinnamon Feeding Blocks Development of Parkinson's Disease in Mouse Model

A team of neurological researchers has identified a molecular mechanism by which cinnamon acts to protect neurons from damage caused by Parkinson's disease (PD) in a mouse model of the syndrome.... Read more

Therapeutics

view channel

Vaccine Being Developed for Heart Disease Close to Reality

The world’s first vaccine for heart disease is becoming a possibility with researchers demonstrating significant arterial plaque reduction in concept testing in mice. Klaus Ley, MD, from the La Jolla Institute for Allergy and Immunology (LA Jolla, CA, USA), and a vascular immunology specialist, is leading the vaccine... Read more

Business

view channel

A Surge in IPOs Revitalize Investments for the Global Pharma and Biotech

Anti-infective drugs, oncology, and pharmaceutical contract laboratories attract the most investment up to now. The intensified private equity and venture capital (PEVC) deal activity in the global healthcare industry during the recession years, 2008–2010, witnessed a waning post-2010. However, the decline in deals... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.