Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Intranasal Antibody Gene Transfer in Mice and Ferrets Protects Against Influenza Infection

By BiotechDaily International staff writers
Posted on 13 Jun 2013
Image
Image
Image: Senior author Dr. James M. Wilson (Photo courtesy of the University of Pennsylvania).
Image: Senior author Dr. James M. Wilson (Photo courtesy of the University of Pennsylvania).
Transmission of the influenza virus was blocked in animal models by a gene therapy technique that introduced a neutralizing antibody gene directly into the cells lining the nose and respiratory system.

Investigators at the University of Pennsylvania (Philadelphia, USA) worked with mouse and ferret influenza models. To protect these animals against influenza A infection the investigators used a modified adeno-associated virus (AAV) vector to deliver the gene that encodes the broadly neutralizing monoclonal anti-influenza antibody FI6 directly into the nasopharyngeal mucosa of the mice and ferrets.

Test animals were exposed to lethal quantities of three strains of influenza serotype H5N1 and two strains of serotype H1N1, all of which were associated with historic human pandemics (including the H1N1 1918 "Spanish flu" pandemic).

The investigators reported in the May 29, 2013, online edition of the journal Science Translational Medicine that intranasal delivery of the FI6 gene afforded complete protection against influenza infection in both the mouse and ferret model systems.

“The experiments described in our paper provide critical proof-of-concept in animals about a technology platform that can be deployed in the setting of virtually any pandemic or biological attack for which a neutralizing antibody exists or can be easily isolated,” said senior author Dr. James. M. Wilson, professor of pathology and laboratory medicine at the University of Pennsylvania. “Further development of this approach for pandemic flu has taken on more urgency in light of the spreading infection in China of the lethal bird strain of H7N9 virus in humans.”


Related Links:
University of Pennsylvania



Channels

Drug Discovery

view channel
Image: Researchers have attached two drugs—TRAIL and Dox—onto graphene strips. TRAIL is most effective when delivered to the external membrane of a cancer cell, while Dox is most effective when delivered to the nucleus, so the researchers designed the system to deliver the drugs sequentially, with each drug hitting a cancer cell where it will do the most damage (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Anticancer Drug Delivery System Utilizes Graphene Strip Transporters

The ongoing search by cancer researchers for targeted drug delivery systems has generated a novel approach that uses graphene strips to transport simultaneously the anticancer agents TRAIL (tumor necrosis... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Biotech Acquisition Designed to Accelerate the Development and Marketing of Immunosequencing Applications

Adaptive Biotechnologies Corp. (Seattle, WA, USA), a developer of next-generation sequencing (NGS) to profile T-cell and B-cell receptors, has acquired of Sequenta, Inc. (South San Francisco, CA, USA), which is expected to expedite and expand the use of innovative immunosequencing technology for researchers and clinicians... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.