Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Intranasal Antibody Gene Transfer in Mice and Ferrets Protects Against Influenza Infection

By BiotechDaily International staff writers
Posted on 13 Jun 2013
Image
Image
Image: Senior author Dr. James M. Wilson (Photo courtesy of the University of Pennsylvania).
Image: Senior author Dr. James M. Wilson (Photo courtesy of the University of Pennsylvania).
Transmission of the influenza virus was blocked in animal models by a gene therapy technique that introduced a neutralizing antibody gene directly into the cells lining the nose and respiratory system.

Investigators at the University of Pennsylvania (Philadelphia, USA) worked with mouse and ferret influenza models. To protect these animals against influenza A infection the investigators used a modified adeno-associated virus (AAV) vector to deliver the gene that encodes the broadly neutralizing monoclonal anti-influenza antibody FI6 directly into the nasopharyngeal mucosa of the mice and ferrets.

Test animals were exposed to lethal quantities of three strains of influenza serotype H5N1 and two strains of serotype H1N1, all of which were associated with historic human pandemics (including the H1N1 1918 "Spanish flu" pandemic).

The investigators reported in the May 29, 2013, online edition of the journal Science Translational Medicine that intranasal delivery of the FI6 gene afforded complete protection against influenza infection in both the mouse and ferret model systems.

“The experiments described in our paper provide critical proof-of-concept in animals about a technology platform that can be deployed in the setting of virtually any pandemic or biological attack for which a neutralizing antibody exists or can be easily isolated,” said senior author Dr. James. M. Wilson, professor of pathology and laboratory medicine at the University of Pennsylvania. “Further development of this approach for pandemic flu has taken on more urgency in light of the spreading infection in China of the lethal bird strain of H7N9 virus in humans.”


Related Links:
University of Pennsylvania



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells (Photo courtesy of the University of Texas, Austin).

Experimental Drug Kills Cancer Cells by Interfering with Their Ion Transport Mechanism

An experimental anticancer drug induces cells to enter a molecular pathway leading to apoptosis by skewing their ion transport systems to greatly favor the influx of chloride anions. To promote development... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.