Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Human Stem Cell Graft Stimulates Neuron Regeneration in Rats with Spinal Injury

By BiotechDaily International staff writers
Posted on 06 Jun 2013
Print article
Image: A three-dimensional, reconstructed magnetic resonance image (upper) shows a cavity caused by a spinal injury nearly filled with grafted neural stem cells, colored green. The lower image depicts neuronal outgrowth from transplanted human neurons (green) and development of putative contacts (yellow dots) with host neurons (blue) (Photo courtesy of the University of California, San Diego School of Medicine).
Image: A three-dimensional, reconstructed magnetic resonance image (upper) shows a cavity caused by a spinal injury nearly filled with grafted neural stem cells, colored green. The lower image depicts neuronal outgrowth from transplanted human neurons (green) and development of putative contacts (yellow dots) with host neurons (blue) (Photo courtesy of the University of California, San Diego School of Medicine).
Image: Senior author Dr. Martin Marsala (Photo courtesy of the University of California, San Diego School of Medicine).
Image: Senior author Dr. Martin Marsala (Photo courtesy of the University of California, San Diego School of Medicine).
Human neural stem cells injected into rats with acute spinal cord injury generated connections between the injected stem cells and surviving host neurons, which stimulated host neuron regeneration and partially replaced the neurons destroyed by the injury.

Investigators at the University of California, San Diego School of Medicine (USA) worked with a model system comprising three-month-old female Sprague-Dawley rats with induced spinal compression injury. Three days postinjury, the animals were randomized and some received intraspinal injections of either human fetal spinal cord-derived neural stem cells (HSSC) or media-only, or did not receive an injection. All animals were immunosuppressed from the day of cell grafting and survived for eight weeks.

Results published in the May 28, 2013, online edition of the journal Stem Cell Research & Therapy revealed that the intraspinal grafting of HSSC in the injured animals led to a progressive and significant improvement in lower extremity paw placement, amelioration of spasticity, and normalization in thermal and tactile pain/escape thresholds at eight weeks post-grafting. Magnetic resonance imaging volume reconstruction and immunofluorescence analysis of grafted cell survival showed near complete injury-cavity-filling by grafted cells and development of putative synapses between grafted and host neurons.


Print article

Channels

Drug Discovery

view channel
Image: A scanning electron microscope (SEM) image of methicillin-resistant Staphylococcus aureus bacteria (Photo courtesy of the CDC).

Drug Combination Cures MRSA Infection While Preventing Development of Resistance

Treatment with a combination comprising the well-known antibiotic cefdinir and the experimental drug TXA709 cured mice of drug-resistant staphylococcal infections while reducing the development of resistance.... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel
Image: A three-dimensional printer adapted for stem cell production (Photo courtesy of Nano Dimension).

Israeli Developers Demonstrate Prototype Three-Dimensional Bioprinter

Two Israeli companies have combined efforts in the development of three-dimensional printer technology for the production of stem cells. The three-dimensional print electronics developer Nano Dimension... Read more

Business

view channel

Acquisition to Boost Development of Drugs for Neurogenic Conditions

According to a recent announcement, a privately held biotechnology/drug development company is to be acquired by one of the major pharmaceutical manufacturers. The drug manufacturer Merck & Co. (Kenilworth, NJ, USA) has agreed to pay 500 million USD up front for Afferent Pharmaceuticals (San Mateo, CA, USA) and up... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.