Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Caloric Restriction Slows Age-Related Loss of Neurons by Activating SIRT1

By BiotechDaily International staff writers
Posted on 06 Jun 2013
Image: Senior author Dr. Li-Huei Tsai (Photo courtesy of the Massachusetts Institute of Technology).
Image: Senior author Dr. Li-Huei Tsai (Photo courtesy of the Massachusetts Institute of Technology).
Image: To delay the onset of neurodegeneration, mice have the option to undergo a regimen of caloric restriction (represented by the scale) or a pharmacological treatment with a SIRT1-activation compound (tube labeled SRT), both of which result in reduced memory loss and preserved synaptic plasticity (Photo courtesy of Dr. Li-Huei Tsai, Massachusetts Institute of Technology).
Image: To delay the onset of neurodegeneration, mice have the option to undergo a regimen of caloric restriction (represented by the scale) or a pharmacological treatment with a SIRT1-activation compound (tube labeled SRT), both of which result in reduced memory loss and preserved synaptic plasticity (Photo courtesy of Dr. Li-Huei Tsai, Massachusetts Institute of Technology).
Caloric restriction (CR), a dietary regimen known to promote lifespan by retarding the onset of age-dependent diseases, has been found to slow the progressive loss of neurons associated with impaired cognitive capacity by activating the enzyme sirtuin 1 (SIRT1, silent mating type information regulation 2 homolog 1).

Investigators at the Massachusetts Institute of Technology (Cambridge, USA) speculated that since aging is the greatest risk factor for neurodegeneration in the brain, CR might slow the progressive loss of neurons. To explore this possibility they used a genetically engineered mouse model that allowed for temporally and spatially controlled onset of neurodegeneration. These animals were fed a diet decreased by 30% from the normal mouse diet for three months.

Results published in the May 22, 2013, issue of the Journal of Neuroscience revealed that CR significantly delayed the onset of neurodegeneration and synaptic loss and dysfunction, and thereby preserved cognitive capacities.

“We not only observed a delay in the onset of neurodegeneration in the calorie-restricted mice, but the animals were spared the learning and memory deficits of mice that did not consume reduced-calorie diets,” said senior author Dr. Li-Huei Tsai, professor of brain and cognitive sciences at the Massachusetts Institute of Technology. “The question now is whether this type of treatment will work in other animal models, whether it is safe for use over time, and whether it only temporarily slows down the progression of neurodegeneration or stops it altogether



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells (Photo courtesy of the University of Texas, Austin).

Experimental Drug Kills Cancer Cells by Interfering with Their Ion Transport Mechanism

An experimental anticancer drug induces cells to enter a molecular pathway leading to apoptosis by skewing their ion transport systems to greatly favor the influx of chloride anions. To promote development... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.