Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Adipose-Derived Stem Cells Are More Potent Immunomodulators Than Those Derived from Bone Marrow

By BiotechDaily International staff writers
Posted on 04 Jun 2013
A recent paper revealed that stem cells derived from fat (adipose) tissue were more potent than those originating from bone marrow as modulators of the body’s immune system.

Considering that adipose tissue-derived stem cells (AT-SCs) are far more plentiful in the body than those found in bone marrow (BM-MSCs), the findings reported by investigators at the Leiden University Medical Center (The Netherlands) should prompt further research into the use of AT-SCs in personalized immunomodulatory therapy.

The investigators compared the immunomodulatory capacities of BM-MSCs and AT-MSCs derived from age-matched donors. They reported in the May 21, 2013, online edition of the journal STEM CELLS Translational Medicine that BM-MSCs and AT-MSCs shared a similar immunophenotype and capacity for in vitro multilineage differentiation.

BM-MSCs and AT-MSCs showed comparable immunomodulatory effects as they were both able to suppress proliferation of stimulated peripheral blood mononuclear cells and to inhibit differentiation of monocyte-derived immature dendritic cells. However, at equal cell numbers, the AT-MSCs showed more potent immunomodulatory effects in both assays as compared with BM-MSCs. Moreover, AT-MSCs showed a higher level of secretion of cytokines that have been implicated in the immunomodulatory modes of action of multipotent stromal cells, such as interleukin-6 and transforming growth factor-beta-1 (TGF-beta-1).

AT-MSCs displayed higher metabolic activity than BM-MSCs, which meant that lower numbers of AT-MSCs could evoke the same level of immunomodulation as higher numbers of BM-MSCs.





Channels

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.