Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Enhanced Natural Killer Cell Activity Could Counter Influenza Virus Immune Response Evasion

By BiotechDaily International staff writers
Posted on 04 Jun 2013
Influenza viruses use their neuraminidase (NA) proteins to escape natural killer (NK) cell killing by impairing the NK cells' NKp46 surface receptor recognition of the viruses.

Investigators at the Hebrew University of Jerusalem (Israel) considered an additional function for neuraminidase in influenza virus infectivity that was linked to the role of NK cells in controlling influenza infection.

The investigators described in the April 18, 2013, issue of the journal Cell Reports an immune-evasion mechanism of influenza viruses that was mediated by the NA protein. By using various NA blockers, they showed that NA removed sialic acid residues from NKp46, and that this led to reduced recognition of HA. Furthermore, they provided in vivo and in vitro evidence for the existence of this NA-mediated, NKp46-dependent immune-evasion mechanism and demonstrated that NA inhibitors, which are commonly used for the treatment of influenza infections, were useful not only as blockers of virus budding but also as boosters of NKp46 recognition.

Influenza viruses mutate and change NA structure so that drugs directed at NA can no longer bind this protein. Nonetheless, this type of widely used drug has the effect of boosting NK cell activity, enabling them to better eliminate the influenza virus. The investigators stress, therefore, that efforts should be focused on developing effective new drugs that would maintain and enhance NK cell activity, without inducing changes in viral NA protein structure.




Channels

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.