Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

Targeting EZH2 May Prevent Development of B-cell Lymphomas

By BiotechDaily International staff writers
Posted on 30 May 2013
Print article
Image: Senior author Dr. Ari Melnick (Photo courtesy of Weill Cornell Medical College).
Image: Senior author Dr. Ari Melnick (Photo courtesy of Weill Cornell Medical College).
A "master regulator" gene has been identified in immune system B-cell lymphocytes that when mutated fails to maintain the normal cell phenotype, which prompts the B-cells to enter a phase of uncontrolled cell division that results in the type of cancer known as B-cell lymphoma.

Most B-cell lymphomas arise from germinal center (GC) B-cells, since they divide rapidly while at the same time mutating their antibody genes. In some cases other genes become mutated as well, which can eventually result in lymphoma formation. GCs are sites within lymph nodes where mature B lymphocytes rapidly proliferate, differentiate, mutate their antibodies, and class switch their antibodies during a normal immune response to an infection. GCs are an important part of the B-cell humoral immune response, and they develop dynamically after the activation of B-cells by T-dependent antigen.

Investigators at Weill Cornell Medical College (New York, NY, USA) examined the role of the protein encoded by the EZH2 (enhancer of zeste homolog 2, also known as histone-lysine N-methyltransferase) gene, which is highly expressed in GC B-cells, in the process leading up to lymphoma formation.

They reported in the May 13, 2013, issue of the journal Cancer Cell that EZH2 repressed proliferation checkpoint genes and helped establish chromatin domains at key regulatory loci to transiently block the differentiation of B-cells away from the GC phenotype. Genomic deletion or pharmacologic suppression of EZH2 expression with a chemical inhibitor suppressed GC formation and function.

"EZH2 is a master regulator protein that turns off the brakes that prevent cell division, so it allows cells to divide without stopping," said senior author Dr. Ari Melnick, professor of medicine at Weill Cornell Medical College. "EZH2 prevents germinal cells from transitioning to antibody-secreting cells. Indeed, in the normal immune system EZH2 prevents B-cells from exiting germinal centers so that these cells can continue to undergo sustained rapid cell division, which continues until the immune system says to stop. Then EZH2 goes away, and B-cells can develop into antibody-secreting cells, which send antibodies into the circulation to fight off infection. Germinal center cells absolutely require EZH2 and the lymphomas that arise from germinal center cells inherit that need regardless of whether they have mutations."

"Researchers had thought EZH2 inhibitors would only help patients with a mutation in their EZH2 gene, which represents a small subset of lymphoma patients. What we found is that a majority of lymphomas turn out to be dependent on normal EZH2, not just mutated EZH2," said Dr. Melnick. "Our research indicates that these inhibitors will be remarkably effective. I am very optimistic."

Related Links:

Weill Cornell Medical College



Print article

Channels

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.