Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Biodegradable Nanoparticles Maintain Glucose Balance in Mouse Diabetes Model

By BiotechDaily International staff writers
Posted on 30 May 2013
Image: Senior author Dr. Daniel G. Anderson (Photo courtesy of Massachusetts Institute of Technology).
Image: Senior author Dr. Daniel G. Anderson (Photo courtesy of Massachusetts Institute of Technology).
Diabetes researchers have developed an acid-degradable polymeric "nanonetwork" made up of nanoparticles loaded with insulin that can detect elevated glucose levels in the blood of diabetics and then release the hormone to return glucose levels to normal.

Investigators at the Massachusetts Institute of Technology (Cambridge, USA) adapted nanotechnology techniques that they had developed for anticancer drug delivery to address the problem of maintaining the glucose balance in diabetes patients.

They prepared a gel-like structure containing a mixture of oppositely charged nanoparticles that by attracting each other could maintain the integrity of the gel and prevent individual nanoparticles from becoming detached. Each nanoparticle was a dextran sphere containing insulin and an enzyme capable of converting glucose to gluconic acid. The structure of the dextran sphere allowed glucose to diffuse freely, so when sugar levels in the blood were elevated, the enzyme produced large quantities of gluconic acid, lowering the pH of the local environment. The acidic environment caused the dextran spheres to disintegrate, releasing insulin into the bloodstream.

The nanoparticle gel was tested in a Type I diabetes mouse model. Results published in the May 2, 2013, online edition of the journal ACS Nano revealed that a single subcutaneous injection of the gel corrected glucose imbalance and maintained normal blood-sugar levels in the animals for an average of 10 days. As the particles were mostly composed of polysaccharides, they were biocompatible and eventually degraded in the body.

“Insulin really works, but the problem is people do not always get the right amount of it. With this system of extended release, the amount of drug secreted is proportional to the needs of the body,” said senior author Dr. Daniel Anderson, associate professor of chemical engineering at the Massachusetts Institute of Technology.

Related Links:

Massachusetts Institute of Technology



comments powered by Disqus

Channels

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel
Image: The DrySyn MULTI converts any standard hotplate stirrer into a high performance reaction block (Photo courtesy of Asynt).

New Reaction Vessel Heating System Is Cleaner and Safer

Biotech and other life science researchers can create a safer, cleaner, and more efficient working environment in their laboratories by switching from oil bath-based heating of reaction vessels to a new... Read more

Business

view channel

Global Computational Biology Sector Expected to Reach over USD 4 Billion by 2020

The global market for computational biology is expected to reach USD 4.285 billion by 2020 growing at a compound annual growth rate (CAGR) of 21.1%, according to new market research. Steady surge in the usage and application of computational biology for bioinformatics R&D programs designed for sequencing genomes... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.