Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

T-cells Derived from Human Embryonic Stem Cells May Prevent Graft Rejection

By BiotechDaily International staff writers
Posted on 29 May 2013
Image: Senior author Dr. Matthias Hebrok (Photo courtesy of the University of California, San Francisco).
Image: Senior author Dr. Matthias Hebrok (Photo courtesy of the University of California, San Francisco).
Image: Contributing author Dr. Mark Anderson (Photo courtesy of the University of California, San Francisco).
Image: Contributing author Dr. Mark Anderson (Photo courtesy of the University of California, San Francisco).
A recent paper described the development of a method for using human embryonic stem cells (hESCs) to generate fully functional thymus tissue capable of supporting T-cell development and proliferation.

Inducing immune tolerance to prevent rejection is a key step toward successful engraftment of stem-cell-derived tissue in a clinical setting. Using human pluripotent stem cells to generate thymic epithelial cells (TECs) capable of supporting T-cell development represents a promising approach to reach this goal; however, progress toward generating functional TECs has been limited.

Investigators at the University of California, San Francisco (USA) developed a new method for directing differentiation of hESCs into thymic epithelial progenitors (TEPs), cells that mature into TECs. The in vitro method was based on the precise chronological regulation of several signaling factors including TGF-beta (transforming growth factor-beta), BMP4 (bone morphogenetic protein 4), Wnt (wingless-type MMTV integration site family), Shh (sonic hedgehog), and FGF (fibroblast growth factor).

Timing the activation of these signaling factors was critical. "If we used one factor for a day longer or shorter it would not work," said senior author Dr. Matthias Hebrok, professor of diabetes research at the University of California, San Francisco. "It would be like driving down the highway and missing your exit."

Results published in the May 16, 2013, online edition of the journal Cell Stem Cell revealed that the hESC-derived TEPs matured into functional TECs that supported T-cell development upon transplantation into thymus-deficient mice. Furthermore, the engrafted TEPs produced T-cells capable of in vitro proliferation as well as in vivo immune responses.

"The thymus is an environment in which T-cells mature, and where they also are instructed on the difference between self and nonself," said contributing author Dr. Mark Anderson, professor of medicine at the University of California, San Francisco. "Some T cells are prepared by the thymus to attack foreign invaders—including transplants, while T cells that would attack our own tissues normally are eliminated in the thymus."

The protocol described in this study prompted only about 15% of hESCs to differentiate into functional thymus tissue. Even so, Dr. Anderson said, "We now have developed a tool that allows us to modulate the immune system in a manner that we never had before."

Related Links:
University of California, San Francisco



WATERS CORPORATION

Channels

Drug Discovery

view channel
Image: Star-like glial cells in red surround alpha-beta plaques in the cortex of a mouse with a model of Alzheimer\'s disease (Photo courtesy of Strittmatter laboratory/Yale University).

Experimental Cancer Drug Reverses Symptoms in Mouse Model of Alzheimer's Disease

An experimental, but clinically disappointing drug for treatment of cancer has been found to be extremely effective in reversing the symptoms of Alzheimer's disease (AD) in a mouse model.... Read more

Lab Technologies

view channel
Image: The gene assembly robot, the GeneTheatre (Photo courtesy of Analytik Jena AG).

Genomic Research Laboratories Await New Compact Liquid Handling System

A small footprint benchtop liquid handler that automates multiple gene assembly tasks and associated procedures such as PCR setup is now available for use by biotech and genomic research laboratories.... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 

Events

27 May 2015 - 28 May 2015
02 Jun 2015 - 03 Jun 2015
15 Jun 2015 - 18 Jun 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.