Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

T-cells Derived from Human Embryonic Stem Cells May Prevent Graft Rejection

By BiotechDaily International staff writers
Posted on 29 May 2013
Image: Senior author Dr. Matthias Hebrok (Photo courtesy of the University of California, San Francisco).
Image: Senior author Dr. Matthias Hebrok (Photo courtesy of the University of California, San Francisco).
Image: Contributing author Dr. Mark Anderson (Photo courtesy of the University of California, San Francisco).
Image: Contributing author Dr. Mark Anderson (Photo courtesy of the University of California, San Francisco).
A recent paper described the development of a method for using human embryonic stem cells (hESCs) to generate fully functional thymus tissue capable of supporting T-cell development and proliferation.

Inducing immune tolerance to prevent rejection is a key step toward successful engraftment of stem-cell-derived tissue in a clinical setting. Using human pluripotent stem cells to generate thymic epithelial cells (TECs) capable of supporting T-cell development represents a promising approach to reach this goal; however, progress toward generating functional TECs has been limited.

Investigators at the University of California, San Francisco (USA) developed a new method for directing differentiation of hESCs into thymic epithelial progenitors (TEPs), cells that mature into TECs. The in vitro method was based on the precise chronological regulation of several signaling factors including TGF-beta (transforming growth factor-beta), BMP4 (bone morphogenetic protein 4), Wnt (wingless-type MMTV integration site family), Shh (sonic hedgehog), and FGF (fibroblast growth factor).

Timing the activation of these signaling factors was critical. "If we used one factor for a day longer or shorter it would not work," said senior author Dr. Matthias Hebrok, professor of diabetes research at the University of California, San Francisco. "It would be like driving down the highway and missing your exit."

Results published in the May 16, 2013, online edition of the journal Cell Stem Cell revealed that the hESC-derived TEPs matured into functional TECs that supported T-cell development upon transplantation into thymus-deficient mice. Furthermore, the engrafted TEPs produced T-cells capable of in vitro proliferation as well as in vivo immune responses.

"The thymus is an environment in which T-cells mature, and where they also are instructed on the difference between self and nonself," said contributing author Dr. Mark Anderson, professor of medicine at the University of California, San Francisco. "Some T cells are prepared by the thymus to attack foreign invaders—including transplants, while T cells that would attack our own tissues normally are eliminated in the thymus."

The protocol described in this study prompted only about 15% of hESCs to differentiate into functional thymus tissue. Even so, Dr. Anderson said, "We now have developed a tool that allows us to modulate the immune system in a manner that we never had before."

Related Links:
University of California, San Francisco



Channels

Drug Discovery

view channel

Curcumin Used to Treat Alzheimer’s Disease

Curcumin, a natural substance found in the spice turmeric, has been used by many Asian cultures for centuries. Now, new research suggests that a close chemical analog of curcumin has properties that may make it useful as a treatment for Alzheimer’s disease. “Curcumin has demonstrated ability to enter the brain, bind... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.