Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PZ HTL SA

MicroRNA Strongly Linked to Acute Myeloid Leukemia Risk and Recovery

By BiotechDaily International staff writers
Posted on 29 May 2013
Image: Senior author Dr. Clara D. Bloomfield (Photo courtesy of Ohio State University).
Image: Senior author Dr. Clara D. Bloomfield (Photo courtesy of Ohio State University).
Overexpression of a specific microRNA (miRNA) in patients suffering from cytogenetically normal (CN) acute myeloid leukemia (AML) has been linked to lower complete remission rate as well as to shorter disease-free and overall survival.

MicroRNAs (miRNAs) are snippets of about 20 nucleotides that block gene expression by attaching to molecules of messenger RNA (mRNA) in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA.

Investigators at Ohio State University (Columbus, USA) measured miRNA levels and expression profiles in the blood and bone marrow of obtained from 363 patients with primary CN-AML. The test population comprised 153 patients under age 60 and 210 aged 60 and over.

Results published in the May 6, 2013, online edition of the Journal of Clinical Oncology strongly linked microRNA-155 (miR-155) to the severity of the disease. Patients with high miR-155 expression were found to be about 50% less likely to achieve complete remission and to have a 60% increase in the risk of death compared to patients with low miR-155 expression.

Although high miR-155 expression was not associated with a distinct miRNA expression profile, it was associated with a gene expression profile enriched for genes involved in cellular mechanisms deregulated in AML. These mechanisms included apoptosis, nuclear factor-kappaB activation, and inflammation.

Senior author Dr. Clara D. Bloomfield, professor of medicine at Ohio State University, said, “Overall, our findings indicate that miR-155 expression is a strong and independent prognostic marker in CN-AML, and they provide clinical validation of data from preclinical models that support a crucial role of miR-155 in leukemia.”

The development of drugs with antagonistic activity toward microRNAs may provide the opportunity for future therapeutic targeting of miR-155 in AML.

Related Links:
Ohio State University



BIOSIGMA S.R.L.
RANDOX LABORATORIES
SLAS - Society for Laboratory Automation and Screening
comments powered by Disqus

Channels

Drug Discovery

view channel

Omega 3 Found to Improve Behavior in Children with ADHD

Supplements of the fatty acids omega 3 and 6 can help children and adolescents who have a specific kind of have attention deficit hyperactivity disorder (ADHD). Moreover, these findings indicate that a customized cognitive training program can improve problem behavior in children with ADHD. Statistics show that 3%–6%... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Lab Technologies

view channel
Image: On target: When researchers introduced nanobodies they made to cells engineered to express a tagged version of a protein in skeletal fibers known as tubulin (red), the nanobodies latched on. The cells above have recently divided (Photo courtesy of Rockefeller University).

Turning Antibodies into Precisely Tuned Nanobodies

New technology has the potential to create nanobodies making them much more accessible than antibodies for all sorts of research. Antibodies control the process of recognizing and zooming in on molecular... Read more

Business

view channel

Two Industry Partnerships Initiated to Fuel Neuroscience Research

Faster, more complex neural research is now attainable by combining technology from two research companies. Blackrock Microsystems, LLC (Salt Lake City, UT, USA), a developer of neuroscience research equipment, announced partnerships with two neuroscience research firms—PhenoSys, GmbH (Berlin, Germany) and NAN Instruments, Ltd.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.