Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

New Technology Unveils DNA Replication's Hidden Secrets

By BiotechDaily International staff writers
Posted on 07 May 2013
Spanish researchers have developed a detailed atlas that characterizes the proteins comprising the replisome, the complex molecular machine that performs DNA replication.

The replisome must first unwind double stranded DNA into two single strands. For each of the resulting single strands, a new complementary sequence of DNA is synthesized. The net result is formation of two new double stranded DNA sequences that are exact copies of the original double stranded DNA sequence.

Some replisome proteins were already known, but the current study utilized a new technology that allowed identification of more proteins needed for DNA replication, opening up new research paths in the field. Investigators at the Spanish National Cancer Research Center (Madrid) developed an approach that combined the isolation of proteins on nascent DNA chains with mass spectrometry (iPOND-MS), allowing a comprehensive proteomic characterization of the human replisome and replisome-associated factors. The iPOND method (procedure to isolate proteins on nascent DNA) can be applied to any proliferating cell type. It relies on the incorporation of a chemical label into newly synthesized DNA. The label can be modified by a chemistry reaction, and proteins linked to the DNA can be isolated and characterized. The Spanish investigators combined iPOND with sensitive mass spectroscopy (MS) analysis.

They reported in the March 28, 2013, issue of the journal Cell Reports that in addition to known replisome components, they had compiled a broad list of proteins that resided in the vicinity of the replisome, some of which were not previously associated with replication. For instance, their data supported a link between DNA replication and the Williams-Beuren syndrome, an autosomal gene deletion disorder involving over 17 genes on chromosome 7 that is characterized by a broad spectrum of abnormalities, and identified the protein ZNF24 (zinc finger protein 24) as a replication factor.

"We suspected that there might be several dozen proteins that control this process meticulously, thus ensuring the correct duplication of our genome as an indispensable step prior to cell division," said senior author Dr. Óscar Fernández-Capetillo, head of the genomic instability group at the Spanish National Cancer Research Centre. "The proteins identified have very different activities: they open up the DNA double helix, copy it, repair any breaks if needs be, modify it in different ways, etc. In short, they are all necessary in order to ensure the correct duplication of the DNA and avoid aberrations in the genetic material that form the basis of tumors. If we manage to find fundamental differences between replication in normal cells and in cancer cells, we will surely be able to find new therapeutic targets on which to focus future treatments in the fight against cancer."

Related Links:
Spanish National Cancer Research Center



Channels

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.