Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Hypoxia-inducible Transcription Factors Trigger Metastasis in Malignant Melanoma Tumors

By BiotechDaily International staff writers
Posted on 06 May 2013
Cancer researchers have linked the hypoxia-inducible transcription factors HIF1 and HIF2 to the processes that control metastasis in melanoma tumors.

Hypoxia-inducible factors (HIFs) are transcription factors that respond to changes in available oxygen in the cellular environment, specifically, to decreases in oxygen, or hypoxia. HIFs promote the activation of genes involved in cancer initiation, progression, and metastases. Hypoxia has been shown to enhance the invasiveness and metastatic potential of tumor cells by regulating the genes involved in the breakdown of the ECM (extracellular matrix) as well as genes that control motility and adhesion of tumor cells. HIF activity is upregulated by mutated RAS, a member of the KRAS family of oncogenes, and BRAF (v-raf murine sarcoma viral oncogene homolog B1) as well as loss-of-function mutations of the PTEN gene. PTEN (phosphatase and tensin homolog), which is missing in 60% to 70% of metastatic cancers in humans, is the name of a phospholipid phosphatase protein, and gene that encodes it. The PTEN gene acts as a tumor suppressor gene thanks to the role of its protein product in regulation of the cycle of cell division, preventing cells from growing and dividing too rapidly.

Investigators at the University of North Carolina (Chapel Hill, USA) examined the molecular basis for melanoma metastasis in a genetically engineered PTEN-deficient, BRAF-mutant mouse model. In this model the activities of HIF1 and HIF2, which are usually overexpressed in melanoma tumors, can be shut down.

Results published in the April 8, 2013, online edition of the Journal of Clinical Investigation revealed that inactivation of HIF1 or HIF2 prevented metastasis without affecting primary tumor formation. Both HIF1 and HIF2 independently activated the proto-oncogene tyrosine-protein kinase SRC (v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian)) using different signaling pathways.

The protein encoded by the SRC gene has been linked to several different cancers, and the identification of its role in melanoma may mean that existing drugs that target SRC may be adapted for treatment of malignant melanoma.

“What we are trying to do now is inhibit these pathways with drugs in the mice to see if we see a decrease of metastasis,” said first author Sara Hanna, a graduate student researcher at the University of North Carolina.

Related Links:

University of North Carolina




comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The European Commission has approved the use of Avastin combined with chemotherapy as a treatment for women with recurrent ovarian cancer (Photo courtesy of Genentech).

Drug for Treatment of Platinum Resistant Recurrent Ovarian Cancer Approved for Use in Europe

For the first time in more than 15 years the European Commission (EC) has approved a new therapeutic option for the most difficult to treat form of ovarian cancer. Ovarian cancer causes more deaths... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel
Image: The DrySyn MULTI converts any standard hotplate stirrer into a high performance reaction block (Photo courtesy of Asynt).

New Reaction Vessel Heating System Is Cleaner and Safer

Biotech and other life science researchers can create a safer, cleaner, and more efficient working environment in their laboratories by switching from oil bath-based heating of reaction vessels to a new... Read more

Business

view channel

Global Computational Biology Sector Expected to Reach over USD 4 Billion by 2020

The global market for computational biology is expected to reach USD 4.285 billion by 2020 growing at a compound annual growth rate (CAGR) of 21.1%, according to new market research. Steady surge in the usage and application of computational biology for bioinformatics R&D programs designed for sequencing genomes... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.