Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

Molecular Switch That Controls Formation of Bacterial Biofilms Identified and Characterized

By BiotechDaily International staff writers
Posted on 06 May 2013
Print article
Researchers studying the molecular mechanism that induces free-living bacteria to adhere together in a biofilm have identified the SinR gene as the master regulator of this transformation.

Biofilms have been found to be involved in a wide variety of microbial infections in the body, by one estimate 80% of all infections. Infectious processes in which biofilms have been implicated include common problems such as urinary tract infections, catheter infections, middle-ear infections, formation of dental plaque, gingivitis, coating contact lenses, and less common but more lethal processes such as endocarditis, infections in cystic fibrosis, and infections of permanent indwelling devices such as joint prostheses and heart valves. More recently, it has been noted that bacterial biofilms may impair cutaneous wound healing and reduce topical antibacterial efficiency in healing or treating infected skin wounds.

Bacteria living in a biofilm usually have significantly different properties from free-floating bacteria of the same species, as the dense and protected environment of the film allows them to cooperate and interact in various ways. One benefit of this environment is increased resistance to detergents and antibiotics, as the dense extracellular matrix and the outer layer of cells protect the interior of the community. In some cases, antibiotic resistance can be increased by more than a thousand times.

Microbes form a biofilm in response to many factors, which may include cellular recognition of specific or nonspecific attachment sites on a surface, nutritional cues, or in some cases, by exposure of free-living planktonic cells to subinhibitory concentrations of antibiotics. When a cell switches to the biofilm mode of growth, it undergoes a phenotypic shift in behavior in which large suites of genes are differentially regulated.

Investigators at Newcastle University (United Kingdom) examined the mode of action of the SinR gene in the Gram-positive model organism Bacillus subtilis. They reported in the April 12, 2013, issue of the Journal of Biological Chemistry that the activity of SinR was controlled by its antagonists, SinI, SlrA, and SlrR. The interaction of these four proteins formed a switch, which determined whether SinR could inhibit biofilm formation by its repression of a number of extracellular matrix-associated operons.

To determine the thermodynamic and kinetic parameters governing the protein-protein and protein-DNA interactions at the heart of this molecular switch, the investigators analyzed the protein-protein and protein-DNA interactions by isothermal titration calorimetry and surface plasmon resonance. They also determined the crystal structure of SinR in complex with DNA, which revealed the molecular basis of base-specific DNA recognition by SinR and suggested that the most effective means of transcriptional control occurred by the looping of promoter DNA.

Senior author Dr. Richard Lewis, professor of structural biology at Newcastle University, said, “SinR is a bit like a rocker switch—a domestic light switch, for instance. In the "down" position, when SinR is bound to DNA, the proteins required to make a biofilm are turned off and the bacteria are free to move. In the "up" position, SinR is no longer bound to DNA and instead interacts with other proteins, and the biofilms genes are turned on.”

Related Links:

Newcastle University



Print article

Channels

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.