Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Reprogramming Fibroblasts into Oligodendrocyte Progenitor Cells May Lead to Cure for Multiple Sclerosis and Cerebral Palsy

By BiotechDaily International staff writers
Posted on 02 May 2013
Working with mouse tissues, investigators have developed a method for converting skin or lung fibroblasts into fully functional oligodendrocytes, the type of cell responsible for myelinating the neurons of the brain and which are lost in myelin disorders such as multiple sclerosis and cerebral palsy.

Cell-based therapies for myelin disorders require technologies to generate functional oligodendrocyte progenitor cells (OPCs). In this regard, investigators at Case Western Reserve School of Medicine (Cleveland, OH, USA) described the direct conversion of mouse embryonic and lung fibroblasts to induced oligodendrocyte progenitor cells (iOPCs) using sets of either three or eight defined transcription factors.

They reported in the April 14, 2013, online edition of the journal Nature Biotechnology that the iOPCs exhibited a bipolar morphology and global gene expression profile consistent with bona fide OPCs. They could be expanded in vitro for at least five passages while retaining the ability to differentiate into multiprocessed oligodendrocytes. When transplanted to hypomyelinated mice, iOPCs were capable of ensheathing host axons and generating compact myelin.

“The myelin repair field has been hampered by an inability to rapidly generate safe and effective sources of functional oligodendrocytes,” said contributing author Dr. Robert Miller, professor of neurosciences at the Case Western Reserve School of Medicine. “The new technique may overcome all of these issues by providing a rapid and streamlined way to directly generate functional myelin producing cells.”

“It is cellular alchemy,” explained senior author Dr. Paul Tesar, assistant professor of genetics and genome sciences at Case Western Reserve School of Medicine. “We are taking a readily accessible and abundant cell and completely switching its identity to become a highly valuable cell for therapy.”

Related Links:

Case Western Reserve School of Medicine




Channels

Drug Discovery

view channel

Curcumin Used to Treat Alzheimer’s Disease

Curcumin, a natural substance found in the spice turmeric, has been used by many Asian cultures for centuries. Now, new research suggests that a close chemical analog of curcumin has properties that may make it useful as a treatment for Alzheimer’s disease. “Curcumin has demonstrated ability to enter the brain, bind... Read more

Biochemistry

view channel
Image: Induced pluripotent stem (iPS) cells, which act very much like embryonic stem cells, are shown growing into heart cells (blue) and nerve cells (green) (Photo courtesy of Gladstone Institutes/Chris Goodfellow).

Methodology Devised to Improve Stem Cell Reprogramming

In a study that provides scientists with a critical new determination of stem cell development and its role in disease, researchers have established a first-of-its-kind approach that outlines the stages... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.