Features Partner Sites Information LinkXpress
Sign In
Demo Company

Reprogramming Fibroblasts into Oligodendrocyte Progenitor Cells May Lead to Cure for Multiple Sclerosis and Cerebral Palsy

By BiotechDaily International staff writers
Posted on 02 May 2013
Print article
Working with mouse tissues, investigators have developed a method for converting skin or lung fibroblasts into fully functional oligodendrocytes, the type of cell responsible for myelinating the neurons of the brain and which are lost in myelin disorders such as multiple sclerosis and cerebral palsy.

Cell-based therapies for myelin disorders require technologies to generate functional oligodendrocyte progenitor cells (OPCs). In this regard, investigators at Case Western Reserve School of Medicine (Cleveland, OH, USA) described the direct conversion of mouse embryonic and lung fibroblasts to induced oligodendrocyte progenitor cells (iOPCs) using sets of either three or eight defined transcription factors.

They reported in the April 14, 2013, online edition of the journal Nature Biotechnology that the iOPCs exhibited a bipolar morphology and global gene expression profile consistent with bona fide OPCs. They could be expanded in vitro for at least five passages while retaining the ability to differentiate into multiprocessed oligodendrocytes. When transplanted to hypomyelinated mice, iOPCs were capable of ensheathing host axons and generating compact myelin.

“The myelin repair field has been hampered by an inability to rapidly generate safe and effective sources of functional oligodendrocytes,” said contributing author Dr. Robert Miller, professor of neurosciences at the Case Western Reserve School of Medicine. “The new technique may overcome all of these issues by providing a rapid and streamlined way to directly generate functional myelin producing cells.”

“It is cellular alchemy,” explained senior author Dr. Paul Tesar, assistant professor of genetics and genome sciences at Case Western Reserve School of Medicine. “We are taking a readily accessible and abundant cell and completely switching its identity to become a highly valuable cell for therapy.”

Related Links:

Case Western Reserve School of Medicine

Print article



view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more

Lab Technologies

view channel
Image: The new ambr 15 fermentation micro-bioreactor system was designed to enhance microbial strain screening applications (Photo courtesy of Sartorius Stedim Biotech).

New Bioreactor System Streamlines Strain Screening and Culture

Biotechnology laboratories working with bacterial cultures will benefit from a new automated micro bioreactor system that was designed to enhance microbial strain screening processes. The Sartorius... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.