Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

05 Mar 2017 - 09 Mar 2017
20 Mar 2017 - 23 Mar 2017
12 Apr 2017 - 14 Apr 2017

Blocking the ATP11B Gene Restores Ovarian Cancer Cell Sensitivity to Cisplatin

By BiotechDaily International staff writers
Posted on 02 May 2013
ADVERTISEMENT
SARTORIUS AG
The expression of a protein in the cellular membrane of ovarian cancer cells was found to mediate the development of resistance to platinum-containing chemotherapeutic compounds while blocking this expression restored sensitivity to the drugs.

Platinum compounds, such as cisplatin and carboplatin, are first line therapeutics in the treatment of many solid tumors, as they induce DNA cross-linking that prevents DNA synthesis and repair in rapidly dividing cells. However, the cells frequently develop resistance mechanisms in the form of reduced platinum uptake or increased platinum export that limit the extent of DNA damage.

Using genomic analyses investigators at the University of Texas MD Anderson Cancer Center (Houston, USA) found that ATP11B gene expression was substantially increased in cisplatin-resistant cells. ATP11B is a P-type ATPase, which is phosphorylated in the intermediate state and drives uphill transport of ions across membranes.

The investigators reported in the April 15, 2013, online edition of the Journal of Clinical Investigation that ATP11B expression was correlated with higher tumor grade in human ovarian cancer samples and with cisplatin resistance in human ovarian cancer cell lines. ATP11B gene silencing restored the sensitivity of ovarian cancer cell lines to cisplatin in vitro. Combined therapy of cisplatin and ATP11B-targeted siRNA (short interfering RNA) significantly decreased cancer growth in mice bearing ovarian tumors derived from cisplatin-sensitive and -resistant cells.

In vitro mechanistic studies on cellular platinum content and cisplatin efflux kinetics indicated that ATP11B enhanced the export of cisplatin from cells.

The investigators concluded that, "These findings identify ATP11B as a potential target for overcoming cisplatin resistance."

Related Links:
University of Texas MD Anderson Cancer Center


Channels

Drug Discovery

view channel
Image: The experimental drug NGI-1 slows cancer growth by blocking glycosylation of the epidermal growth factor receptor (EGFR), which is shown in the above diagram (Photo courtesy of Wikimedia Commons).

Experimental Drug Slows Lung Cancer Growth by Blocking Protein Glycosylation

An interesting new experimental anti-cancer drug slows growth of certain lung tumor cells by preventing the glycosylation of critical cell surface receptor proteins. Asparagine (N)-linked glycosylation... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

Collaborative Agreement to Aid in Setting Guidelines for Evaluating Potential Ebola Therapy

Cooperation between an Israeli biopharmaceutical company and medical branches of the US government is designed to set ground rules for continued evaluation of an experimental therapy for Ebola virus disease. RedHill Biopharma Ltd. (Tel Aviv, Israel), a biopharmaceutical company primarily focused on development and c... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.