Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

A Transcription Factor Feedback Loop Controls Early Placenta Development

By BiotechDaily International staff writers
Posted on 30 Apr 2013
The molecular pathways leading to development of the placenta are regulated by a feedback loop between the transcription factors Gcm1 (chorion-specific transcription factor or hGCMa), which is a mammalian homologue of the Drosophila GCM (glia cells missing) and Fzd5 (Frizzled5).

Abnormal placental development during pregnancy is associated with conditions such as preeclampsia, intrauterine growth restriction, and even fetal death in humans. Investigators at the Chinese Academy of Sciences (Beijing) worked with a mouse model of placental development that closely mimicked the process in humans. They focused on the earliest steps of placenta formation, which involves the development of the labyrinthine layer, a specialized epithelium that sits between the maternal blood and fetal blood vessels and facilitates the exchange of nutrients, gases, and wastes between the mother and fetus. Pivotal to the development of a functional labyrinth layer are the processes of folding and branching of a flat sheet of trophoblast cells (originally the outer layer of the blastocyst), and of trophoblast cell differentiation.

Results published in the April 16, 2013, online edition of the journal PLOS Biology revealed that in mice Fzd5, a receptor component of the Wnt signaling pathway, and Gcm1, an important transcription factor for labyrinth development, formed a positive feedback loop that directed normal placental development. Gcm1 up-regulated Fzd5 specifically at branching sites, and elevated Fzd5 expression in turn maintained expression of Gcm1.

Fzd5-mediated signaling was required for the disassociation of cell junctions and for the up-regulation of VEGF (vascular endothelial growth factor) expression in trophoblast cells. Furthermore, the FZD5-GCM1 signaling cascade was found to operate in primary cultures of human trophoblasts undergoing differentiation.

"We provide here genetic, molecular, pharmacological, and physiological evidence that an amplifying feedback loop between Gcm1 and Fzd5 is essential for normal placental development of mice," said senior author Dr. Haibin Wang, professor of developmental biology at the Chinese Academy of Sciences. "Besides shedding light on the fundamental mechanisms of branching morphogenesis during mouse placental development, the finding has high clinical relevance, since the Gcm1-Fzd5 signaling cascade also operates in human trophoblasts, and when its regulation goes wrong, it can be linked to trophoblast-related diseases, such as preeclampsia."

Related Links:
Chinese Academy of Sciences


comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The European Commission has approved the use of Avastin combined with chemotherapy as a treatment for women with recurrent ovarian cancer (Photo courtesy of Genentech).

Drug for Treatment of Platinum Resistant Recurrent Ovarian Cancer Approved for Use in Europe

For the first time in more than 15 years the European Commission (EC) has approved a new therapeutic option for the most difficult to treat form of ovarian cancer. Ovarian cancer causes more deaths... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel
Image: The DrySyn MULTI converts any standard hotplate stirrer into a high performance reaction block (Photo courtesy of Asynt).

New Reaction Vessel Heating System Is Cleaner and Safer

Biotech and other life science researchers can create a safer, cleaner, and more efficient working environment in their laboratories by switching from oil bath-based heating of reaction vessels to a new... Read more

Business

view channel

Global Computational Biology Sector Expected to Reach over USD 4 Billion by 2020

The global market for computational biology is expected to reach USD 4.285 billion by 2020 growing at a compound annual growth rate (CAGR) of 21.1%, according to new market research. Steady surge in the usage and application of computational biology for bioinformatics R&D programs designed for sequencing genomes... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.