Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Novel Anticancer Drug Restores Tumor Cell Apoptotic Pathways

By BiotechDaily International staff writers
Posted on 29 Apr 2013
Image: Dr. Guillaume Lessene (above) and his collaborators have tailor-made a new chemical compound that blocks a protein that has been linked to poor responses to treatment in cancer patients (Photo courtesy of Walter and Eliza Hall Institute, Australia).
Image: Dr. Guillaume Lessene (above) and his collaborators have tailor-made a new chemical compound that blocks a protein that has been linked to poor responses to treatment in cancer patients (Photo courtesy of Walter and Eliza Hall Institute, Australia).
Cancer researchers have developed a drug that blocks a prosurvival gene in cancer cells and renders them vulnerable to elimination from the body by classical cell death (apoptotic) pathways.

The prosurvival protein BCL-XL is often overexpressed in solid tumors and it renders malignant tumor cells resistant to anticancer therapeutics. BCL-XL (B-cell lymphoma-extra-large) is a transmembrane molecule in the mitochondria. It is a member of the BCL-2 family of proteins, and acts as a prosurvival protein by preventing the release of mitochondrial contents such as cytochrome c, which would lead to caspase activation. BCL-2 (B-cell lymphoma 2) was the founding member of the BCL-2 family of apoptosis regulator proteins encoded by the gene of the same name. The formal name for BCL-2 is B-cell lymphoma 2, as it was the second member of a range of proteins initially described in chromosomal translocations involving chromosomes 14 and 18 in follicular lymphomas.

Investigators at the Walter and Eliza Hall Institute (Victoria, Australia) and their colleagues at the biotech company Genentech (San Francisco, CA, USA) sought to develop a drug that would inhibit specifically BCL-XL without affecting other BCL-2 family proteins.

To this end, they employed a high-throughput screen to discover a new series of small molecules targeting BCL-XL and then used this structure to guide development of the drug by medicinal chemistry. They reported in the April 21, 2013, online edition of the journal Nature Chemical Biology that the optimized compound, WEHI-539, had high affinity (subnanomolar range) and selectivity for BCL-XL and potently killed cells by selectively antagonizing its prosurvival activity. WEHI-539 was found to belong to the class of anti-cancer drugs called "BH3-mimetics.” Other drugs in this class include navitoclax (ABT-263) and ABT-199/GDC-0199, which are currently in clinical trials for the treatment leukemia and lymphoma.

Senior author Dr. Guillaume Lessene, professor of chemical biology at the Walter and Eliza Hall Institute, said, "That the development of WEHI-539 was an important milestone on the way to creating potential anticancer agents that act to restore cell death by inhibiting BCL-XL. Although WEHI-539 is not optimized for use in patients, it will be a very valuable tool for researchers to use to dissect how BCL-XL controls cancer cell survival."

"We were very excited to see the team's work culminate in a compound that specifically inhibits BCL-XL," said Dr. Lessene. "WEHI-539 is the first compound that our chemists have developed from scratch, using the three-dimensional structure of BCL-XL to build and refine its design."

Related Links:

Walter and Eliza Hall Institute
Genentech



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Alternative splicing produces two protein isoforms (Photo courtesy of Wikimedia Commons).

Key Regulator of Cancer-Inducing Alternative Splicing Identified

Cancer researchers have identified the splicing factor RBM4 (RNA-binding protein 4) as a key determinant in processes that prevent tumor development and spread. RBM4 is known to be crucial to gene splicing... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Lab Technologies

view channel
Image: Leica Microsystems launches the inverted research microscope platform Leica DMi8 (Photo courtesy of Leica Microsystems).

New Inverted Microscope Designed to Readily Adapt to Changing Research Demands

A new inverted microscope for biotech and other life science laboratories was designed to readily accommodate modifications and upgrades to allow it to keep current with changing research demands and interests.... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.