Features | Partner Sites | Information | LinkXpress
Sign In
Demo Company

Novel Anticancer Drug Restores Tumor Cell Apoptotic Pathways

By BiotechDaily International staff writers
Posted on 29 Apr 2013
Image: Dr. Guillaume Lessene (above) and his collaborators have tailor-made a new chemical compound that blocks a protein that has been linked to poor responses to treatment in cancer patients (Photo courtesy of Walter and Eliza Hall Institute, Australia).
Image: Dr. Guillaume Lessene (above) and his collaborators have tailor-made a new chemical compound that blocks a protein that has been linked to poor responses to treatment in cancer patients (Photo courtesy of Walter and Eliza Hall Institute, Australia).
Cancer researchers have developed a drug that blocks a prosurvival gene in cancer cells and renders them vulnerable to elimination from the body by classical cell death (apoptotic) pathways.

The prosurvival protein BCL-XL is often overexpressed in solid tumors and it renders malignant tumor cells resistant to anticancer therapeutics. BCL-XL (B-cell lymphoma-extra-large) is a transmembrane molecule in the mitochondria. It is a member of the BCL-2 family of proteins, and acts as a prosurvival protein by preventing the release of mitochondrial contents such as cytochrome c, which would lead to caspase activation. BCL-2 (B-cell lymphoma 2) was the founding member of the BCL-2 family of apoptosis regulator proteins encoded by the gene of the same name. The formal name for BCL-2 is B-cell lymphoma 2, as it was the second member of a range of proteins initially described in chromosomal translocations involving chromosomes 14 and 18 in follicular lymphomas.

Investigators at the Walter and Eliza Hall Institute (Victoria, Australia) and their colleagues at the biotech company Genentech (San Francisco, CA, USA) sought to develop a drug that would inhibit specifically BCL-XL without affecting other BCL-2 family proteins.

To this end, they employed a high-throughput screen to discover a new series of small molecules targeting BCL-XL and then used this structure to guide development of the drug by medicinal chemistry. They reported in the April 21, 2013, online edition of the journal Nature Chemical Biology that the optimized compound, WEHI-539, had high affinity (subnanomolar range) and selectivity for BCL-XL and potently killed cells by selectively antagonizing its prosurvival activity. WEHI-539 was found to belong to the class of anti-cancer drugs called "BH3-mimetics.” Other drugs in this class include navitoclax (ABT-263) and ABT-199/GDC-0199, which are currently in clinical trials for the treatment leukemia and lymphoma.

Senior author Dr. Guillaume Lessene, professor of chemical biology at the Walter and Eliza Hall Institute, said, "That the development of WEHI-539 was an important milestone on the way to creating potential anticancer agents that act to restore cell death by inhibiting BCL-XL. Although WEHI-539 is not optimized for use in patients, it will be a very valuable tool for researchers to use to dissect how BCL-XL controls cancer cell survival."

"We were very excited to see the team's work culminate in a compound that specifically inhibits BCL-XL," said Dr. Lessene. "WEHI-539 is the first compound that our chemists have developed from scratch, using the three-dimensional structure of BCL-XL to build and refine its design."

Related Links:

Walter and Eliza Hall Institute



view channel
Image: Schematic representation of HIV DART binding to two distinct antigens simultaneously, redirecting the killer T-cells to destroy HIV-1 infected cells (Photo courtesy of Duke University).

Bi-Specific Antibodies Shown to Clear Latent HIV Infections

Bi-specific antibodies or DARTS (dual-affinity re-targeting proteins) have been used to eliminate latent HIV-infection from patient samples by redirecting polyclonal T-cells to specifically engage with... Read more

Lab Technologies

view channel

New Genomic Research Kit Simplifies Exome Studies

An exciting new tool is now available for biotech researchers working in the field of genomic analysis. The human exome is critical to our genetic make-up and is generally accepted as having the greatest influence on how the genetic blueprint is utilized. The exome is defined as all coding exons in the genome and is... Read more


view channel

Sale of Mexican Pharmaceutical Company Expected to Boost Latin American Prescription Drug Market

The sale of a major Mexican pharmaceutical company to an international generic drug corporation is expected to accelerate the growth of the Latin American market for prescription drugs. Teva Pharmaceutical Industries Ltd. (Petah Tikva, Israel) announced that it has entered into definitive agreements to buy Representaciones... Read more


17 Oct 2015 - 21 Oct 2015
25 Oct 2015 - 29 Oct 2015
16 Nov 2015 - 19 Nov 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.