Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Antiangiogenic Monoclonal Antibody Slows Tumor Growth in Breast Cancer and Angiosarcoma Models

By BiotechDaily International staff writers
Posted on 29 Apr 2013
A monoclonal antibody specific for a protein linked to the angiogenesis required for tumor growth was shown to have potent antitumor and antiangiogenic properties both in vitro and in mouse xenograft models.

Investigators at the University of North Carolina (Chapel Hill, USA) had found previously that secreted frizzled-related protein 2 (SFRP2) was overexpressed in human angiosarcoma and breast cancer and stimulated angiogenesis via activation of the calcineurin/NFATc3 pathway. Subsequently, SFRP2 was found in a variety of other human cancers, including prostate, lung, pancreas, ovarian, colon, and kidney.

In the current study, the investigators assessed the effects of a novel monoclonal antibody (mAb) that blocked SFRP2 expression. They examined the effect of this antagonism on tumor growth and Wnt-signaling and evaluated whether SFRP2 would be a viable therapeutic target.

The antiangiogenic and antitumor properties of the SFRP2 mAb were determined using in vitro proliferation, migration, and tube formation assays and in vivo angiosarcoma and triple-negative breast cancer models. Wnt-signaling was assessed in endothelial and tumor cells treated with the SFRP2 mAb using Western blotting. Pharmacokinetic and biodistribution data were generated in tumor bearing and control mice.

Results published in the April 19, 2013, online edition of the journal Molecular Cancer Therapeutics revealed that the SFRP2 mAb induced antitumor and antiangiogenic effects in vitro and inhibited activation of beta-catenin and nuclear factor of activated T-cells c3 (NFATc3) in endothelial and tumor cells. An increase in beta-catenin production has been noted in those people with basal cell carcinoma and leads to the increase in proliferation of related tumors.

Treatment of SVR angiosarcoma allografts in nude mice with the SFRP2 mAb decreased tumor volume by 58% while treatment of MDA-MB-231 breast carcinoma xenografts decreased tumor volume by 52%. Pharmacokinetic studies showed that the antibody was long circulating in the blood and preferentially accumulated in SFRP2-positive tumors.

“We previously microdissected blood vessels from malignant human breast cancers and compared gene expression to blood vessels microdissected from normal tissue. We found a number of genes that were highly over-expressed in the malignant blood vessels compared to normal. One of those genes was SFRP2,” said senior author Dr. Nancy Klauber-DeMore, professor of surgery at the University of North Carolina.

“We showed in this paper that targeting SFRP2 with a monoclonal antibody in preclinical models inhibits tumor growth. This demonstrates that SFRP2 is a therapeutic target for cancer,” said Dr. Klauber-DeMore. “Demonstrating that a monoclonal antibody to SFRP2 inhibits tumor growth in preclinical models opens up a new potential for drug development. This treatment is not presently available for human studies, but our efforts are focused on obtaining funding for further drug development that would lead to a clinical trial.”

Related Links:

University of North Carolina



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells (Photo courtesy of the University of Texas, Austin).

Experimental Drug Kills Cancer Cells by Interfering with Their Ion Transport Mechanism

An experimental anticancer drug induces cells to enter a molecular pathway leading to apoptosis by skewing their ion transport systems to greatly favor the influx of chloride anions. To promote development... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.