Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PURITAN MEDICAL
GLOBETECH PUBLISHING LLC

"Transparent Brain" Expected to Yield Breakthroughs in Understanding Neurological Disorders

By BiotechDaily International staff writers
Posted on 25 Apr 2013
Replacement of the brain's fat content with a clear, permeable gel allows optical, fluorescent, and electron microscope studies as well as immunohistochemical analyses to be carried out on intact tissues that have not been damaged or modified by sample preparation techniques.

Investigators at Stanford University (Palo Alto, CA, USA) developed a novel method for creating a "transparent" brain by replacing fat tissue with a clear, permeable gel. The technique was based on infusing a cocktail of reagents, including a plastic-like polymer and formaldehyde, into a mouse brain. When heated, the solution formed a transparent, porous gel that biochemically integrated with, and physically supported, the brain tissue while excluding the lipids, which were removed via an electrochemical process. The process was named CLARITY for Clear Lipid-exchanged Anatomically Rigid Imaging/Immunostaining-compatible Tissue Hydrogel.

A report in the April 10, 2013, online edition of the journal Nature revealed initial results obtained with a CLARITY-treated mouse brain. These results showed intact-tissue imaging of long-range projections, local circuit wiring, cellular relationships, subcellular structures, protein complexes, nucleic acids, and neurotransmitters. CLARITY also enabled intact-tissue in situ hybridization, immunohistochemistry with multiple rounds of staining and de-staining in nonsectioned tissue, and antibody labeling throughout the intact adult mouse brain.

In addition, CLARITY enabled fine structural analysis of clinical samples, including nonsectioned human tissue from a formaldehyde-preserved postmortem human brain from a person who had autism, establishing a path for the transmutation of human tissue into a stable, intact, and accessible form suitable for probing structural and molecular underpinnings of physiological function and disease.

“CLARITY will help support integrative understanding of large-scale, intact biological systems,” said senior author Dr. Karl Deisseroth, professor of bioengineering and of psychiatry and behavioral sciences at Stanford University. “It provides access to subcellular proteins and molecules, while preserving the continuity of intact neuronal structures such as long-range circuit projections, local circuit wiring, and cellular spatial relationships.”

Related Links:
Stanford University



Channels

Genomics/Proteomics

view channel
Image: The photomicrograph shows the head of a mouse embryo in which the pericytes are visible as blue dots along the blood vessel (Photo courtesy of the University of Gothenburg).

Genetically Engineered Mouse Model Reveals Key to Formation of the Blood-Brain Barrier

Use of a mouse model that had been genetically engineered to lack the gene that encodes the forkhead transcription factor Foxf2 has helped to explain how pericytes, cells that line the capillaries, form... Read more

Drug Discovery

view channel
Image: Neurons cultivated with the help of ordinary skin cells create a three-dimensional network on a chip (Photo courtesy of Dr. Edinson Lucumi Moreno, University of Luxembourg).

Bioreactor Culture of Dopamine-Producing Neurons May Lead to Personalized Treatment of Parkinson's Disease

By developing a procedure for transforming skin cells into functional dopamine-producing neurons, researchers have taken an important first step towards the development of personalized treatment of Parkinson's... Read more

Business

view channel

Biopharm Startup to Commercialize Antibody Therapy for Drug Resistant Cancers

A biopharm startup company has licensed the rights to commercialize an antibody-based approach for treatment of drug resistant cancers. The new company, CadheRx Therapeutics (La Jolla, CA, USA), entered into a licensing agreement with Stony Brook University (NY, USA) to develop and market an anticancer technology derived... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.