Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Cryo-Electron Microscope Study Follows Changes in Dengue Fever Virus Morphology

By BiotechDaily International staff writers
Posted on 25 Apr 2013
A recent paper detailed a cryo-electron microscope study that revealed morphological changes that occur when the virus that causes dengue fever is warmed to human body temperature.

Dengue fever is an acute infectious disease caused by four closely related viruses and transmitted by the bite of the female Aedes mosquito. The disease, which has no specific treatment, occurs in both epidemic and sporadic form in warm climates. The classic symptoms, following an incubation period of five to eight days, are high fever, chills, severe headache, pain in the joints, pain behind the eyes, rash, sweating, and prostration, but infected persons may experience milder symptoms. Symptoms subside in two to four days, but after a remission lasting from a few hours to two days there is another rise in temperature, and a generalized rash appears. Dengue hemorrhagic fever, a severe form of the disease, can cause hemorrhage, shock, and encephalitis. It occurs when a person who has acquired immunity to one of the viruses that cause dengue fever is infected by a different dengue virus; antibodies to the first dengue infection apparently work to aid the second virus. It is a leading cause of death among children in Southeast Asia and in recent years has become increasingly prevalent in tropical America.

Investigators at Purdue University (West Lafayette, IN, USA) used a cryo-electron microscope to examine changes in morphology of the dengue virus as it warmed from 28 °C (the temperature found in mosquito or tick vectors) to the human body temperature of 37 °C. Cryo-electron microscopy allows the observation of specimens that have not been stained or fixed in any way, showing them in their native environment while integrating multiple images to form a three-dimensional model of the sample.

The investigators reported in the April 8, 2013, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that at room temperature the virus had a smooth surface with a diameter of about 50 nanometers and little exposed membrane, while at human body temperature the virions had a bumpy appearance with a diameter of nearly 55 nanometers and some exposed membrane. The bumpy structure at 37 °C was similar to the previously predicted structure of an intermediate between the smooth form seen at lower temperatures and the mature form of the virus seen at the time of host cell invasion.

"The bumpy form of the virus would be the form present in humans, so the optimal dengue virus vaccines should induce antibodies that preferentially recognize epitopes exposed in that form," said senior author Dr. Michael G. Rossmann, professor of biological sciences at Purdue University.

Related Links:
Purdue University




Channels

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.