Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Novel Method Enables Isolation of Nearly Pure Population of Mammary Gland Stem Cells

By BiotechDaily International staff writers
Posted on 25 Apr 2013
The surface protein marker CD1d is highly expressed on mammary gland stem cells (MaSCs), and the presence of this protein was used in a novel method to isolate a remarkably pure MaSC population.

CD1d is a member of the CD1 (cluster of differentiation 1) family of glycoproteins expressed on the surface of various human antigen-presenting cells. They are nonclassical major histocompatibility complex (MHC) proteins, related to the class I MHC proteins, and are involved in the presentation of lipid antigens to T-cells.

The partial purification of mouse MaSCs using a combination of cell surface markers has improved understanding of their role in normal development and breast tumorigenesis. However, despite the significant improvement in techniques for MaSC enrichment, there is presently no methodology that adequately isolates pure MaSCs.

To correct this lack, investigators at Cold Spring Harbor Laboratory (NY, USA) utilized the fact that MaSCs replicate very slowly to develop a method for their purification based on incorporation of a green fluorescent protein into the nuclei of various mammary cells including MaSCs. Since MaSCs replicate less often than other cell types, they retain more of the green fluorescent protein and can be isolated by cell sorting techniques that recognize CD1d.

The investigators reported in the April 11, 2013, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that working with a remarkably pure MaSC population, they were able to functionally characterize a set of MaSC-enriched genes and discovered factors controlling MaSC survival.

"With this advancement, we are now able to profile normal and cancer stem cells at a very high degree of purity, and perhaps point out which genes should be investigated as the next breast cancer drug targets," said senior author Dr. Gregory Hannon, professor of molecular biology at Cold Spring Harbor Laboratory.

Related Links:

Cold Spring Harbor Laboratory



Channels

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.