Features | Partner Sites | Information | LinkXpress
Sign In
JIB
BioConferenceLive
GLOBETECH PUBLISHING

Fractalkine Treatment Alleviates Symptoms of Type II Diabetes

By BiotechDaily International staff writers
Posted on 23 Apr 2013
Treatment of mouse diabetes models and in vitro cultures of human pancreatic cells with the protein fractalkine alleviated symptoms of type II diabetes by increasing insulin secretion and improving glucose tolerance.

Fractalkine (also known as chemokine (C-X3-C motif) ligand 1) is produced as a long 373-amino acid protein with an extended mucin-like stalk and a chemokine domain on top. The mucin-like stalk permits it to bind to the surface of certain cells. Furthermore, a soluble (90-kDa) version of this chemokine has also been observed. Soluble fractalkine potently attracts T-cells and monocytes, while the cell-bound chemokine promotes strong adhesion of leukocytes to activated endothelial cells, where it is primarily expressed. Fractalkine elicits its adhesive and migratory functions by interacting with the chemokine receptor CX3CR1.

Investigators at the University of California, San Diego (USA) studied the role of fractalkine in type II diabetes using a mouse model that had been genetically engineered to lack the gene for production of the fractalkine receptor CX3CR1. They reported in the April 11, 2013, issue of the journal Cell that these knockout mice exhibited a marked defect in glucose and GLP1 (glucagon-like peptide-1)-stimulated insulin secretion, and this defect was also observed in vitro in isolated pancreatic islets from CX3CR1 knockout mice. Pancreatic islet cells from the knockout mice exhibited reduced expression of a set of genes necessary for the fully functional, differentiated beta cell state, whereas treatment of wild-type (WT) islets with fractalkine led to increased expression of these genes.

Expression of fractalkine in islets was decreased by aging, high-fat diet, and obesity. In vitro treatment of islets with fractalkine increased intracellular calcium ion levels and potentiated insulin secretion in both mouse and human islets.

"Our discovery of fractalkine's role in beta cells is novel and has never been talked about in prior literature," said senior author Dr. Jerrold M. Olefsky, professor of medicine at the University of California, San Diego. "Whether or not decreased fractalkine or impaired fractalkine signaling are causes of decreased beta cell function in diabetes is unknown. What we do know, without doubt, is that administration of fractalkine improves or restores insulin secretion in all of the mouse models we have examined, as well as in human islet cells. If successfully developed, this could be an important new complement to the therapeutic arsenal we use in type II diabetes. It is not likely to cure diabetes, but it would certainly do a good job at providing glycemic control."

Related Links:
University of California, San Diego



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Blocking the activity of HSP101 may imprison the malaria parasite inside its protective vacuole within the red blood cell. In the electron micrograph, the malaria parasites appear in blue and uninfected red blood cells are shown in red (Photo courtesy of the [US] National Institute of Allergy and Infectious Diseases).

Heat Shock Protein Plays Critical Role in Malaria Parasite Protein Trafficking

A pair of recent papers described the molecular operators that enable the malaria parasite Plasmodium falciparum to export a large variety of proteins across the parasitophorous vacuolar membrane (PVM)... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel
Image: A one-year-old baby sits in a brain scanner, called magnetoencephalography (MEG)—a noninvasive approach to measuring brain activity. The baby listens to speech sounds such as “da” and “ta” played over headphones while researchers record her brain responses (Photo courtesy of the Institute for Learning & Brain Sciences at the University of Washington).

Brain Scanner Shows Infants’ Brains Rehearse Speech Sounds Months Before Their First Words

New research in 7- and 11-month-old infants revealed that speech sounds stimulate brain regions that coordinate and plan motor movements for speech. The new study suggests that babies’ brains begin establishing... Read more

Business

view channel

Cancer Immunotherapy Sector Predicted to Surge to USD 9 Billion Across Major Pharma Through 2022

The immunotherapy market will experience substantial growth through 2022, increasing from USD 1.1 billion in 2012 to nearly USD 9 billion in 2022 (corresponding to 23.8% annual growth) in the United Kingdom, United States, France, Germany, Italy, Spain, and Japan, according to recent market research. This notable growth... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.