Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Molecular Pathways in the Hypothalamus Lead to Hypertension and Cardiovascular Disease

By BiotechDaily International staff writers
Posted on 23 Apr 2013
A recent paper linked overexpression of mTORC1 (mammalian target of rapamycin complex 1) activity in the hypothalamus to the development of cardiovascular diseases.

MTORC1 is a serine/threonine protein kinase of the phosphatidylinositol 3-kinase (PI3K) protein family that regulates cell growth, proliferation, motility, survival, protein synthesis, and transcription. In cancer cells, the mTOR pathway is deregulated and signals tumor cells to grow, divide, and metastasize.

Investigators at the University of Iowa (Iowa City, USA) showed in the April 2, 2013, issue of the journal Cell Metabolism that mTOR signaling in the hypothalamus was tied to the activity of the sympathetic nervous system and to cardiovascular function.

Modulation of mTORC1 signaling caused dramatic changes in sympathetic traffic, blood flow, and arterial pressure. The data also demonstrated the importance of hypothalamic mTORC1 signaling in transducing the sympathetic and cardiovascular actions of leptin, a hormone produced by fat cells that has been implicated in obesity-related hypertension. Leptin activated mTORC1 in a specific part of the hypothalamus causing increased nerve activity and a rise in blood pressure. These effects were blocked by inhibiting activation of mTORC1.

"Our study shows that when this protein [mTORC1] is either activated or inhibited in a very specific manner, it can cause dramatic changes in blood pressure,” said senior author Dr. Kamal Rahmouni, associate professor of pharmacology and internal medicine at the University of Iowa. "Given the importance of this protein for the control of blood pressure, any abnormality in its activity might explain the hypertension associated with certain conditions like obesity and cardiovascular disease."

"Cardiovascular diseases are the leading cause of death worldwide, and hypertension is a major cardiovascular risk factor," said Dr. Rahmouni. "Our study identifies the protein called mTORC1 in the hypothalamus as a key player in the control of blood pressure. Targeting mTORC1 pathways may, therefore, be a promising strategy for the management of cardiovascular risk factors."

Related Links:

University of Iowa



Channels

Drug Discovery

view channel
Image: Star-like glial cells in red surround alpha-beta plaques in the cortex of a mouse with a model of Alzheimer\'s disease (Photo courtesy of Strittmatter laboratory/Yale University).

Experimental Cancer Drug Reverses Symptoms in Mouse Model of Alzheimer's Disease

An experimental, but clinically disappointing drug for treatment of cancer has been found to be extremely effective in reversing the symptoms of Alzheimer's disease (AD) in a mouse model.... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.