Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Molecular Pathways in the Hypothalamus Lead to Hypertension and Cardiovascular Disease

By BiotechDaily International staff writers
Posted on 23 Apr 2013
A recent paper linked overexpression of mTORC1 (mammalian target of rapamycin complex 1) activity in the hypothalamus to the development of cardiovascular diseases.

MTORC1 is a serine/threonine protein kinase of the phosphatidylinositol 3-kinase (PI3K) protein family that regulates cell growth, proliferation, motility, survival, protein synthesis, and transcription. In cancer cells, the mTOR pathway is deregulated and signals tumor cells to grow, divide, and metastasize.

Investigators at the University of Iowa (Iowa City, USA) showed in the April 2, 2013, issue of the journal Cell Metabolism that mTOR signaling in the hypothalamus was tied to the activity of the sympathetic nervous system and to cardiovascular function.

Modulation of mTORC1 signaling caused dramatic changes in sympathetic traffic, blood flow, and arterial pressure. The data also demonstrated the importance of hypothalamic mTORC1 signaling in transducing the sympathetic and cardiovascular actions of leptin, a hormone produced by fat cells that has been implicated in obesity-related hypertension. Leptin activated mTORC1 in a specific part of the hypothalamus causing increased nerve activity and a rise in blood pressure. These effects were blocked by inhibiting activation of mTORC1.

"Our study shows that when this protein [mTORC1] is either activated or inhibited in a very specific manner, it can cause dramatic changes in blood pressure,” said senior author Dr. Kamal Rahmouni, associate professor of pharmacology and internal medicine at the University of Iowa. "Given the importance of this protein for the control of blood pressure, any abnormality in its activity might explain the hypertension associated with certain conditions like obesity and cardiovascular disease."

"Cardiovascular diseases are the leading cause of death worldwide, and hypertension is a major cardiovascular risk factor," said Dr. Rahmouni. "Our study identifies the protein called mTORC1 in the hypothalamus as a key player in the control of blood pressure. Targeting mTORC1 pathways may, therefore, be a promising strategy for the management of cardiovascular risk factors."

Related Links:

University of Iowa



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells (Photo courtesy of the University of Texas, Austin).

Experimental Drug Kills Cancer Cells by Interfering with Their Ion Transport Mechanism

An experimental anticancer drug induces cells to enter a molecular pathway leading to apoptosis by skewing their ion transport systems to greatly favor the influx of chloride anions. To promote development... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Lab Technologies

view channel

Genome-Wide Mutation-Searching Computational Software Designed for Genomic Medicine

Analysis software cross-references a patient’s symptoms with his genome sequence to help physicians in the diagnosis of disease. This software was created by a team of scientists from A*STAR’s Genome Institute of Singapore (GIS), led by Dr. Pauline Ng. The research findings were published August 3, 2014, in the journal... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.