Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Micromedic Technologies

Molecular Pathways in the Hypothalamus Lead to Hypertension and Cardiovascular Disease

By BiotechDaily International staff writers
Posted on 23 Apr 2013
Print article
A recent paper linked overexpression of mTORC1 (mammalian target of rapamycin complex 1) activity in the hypothalamus to the development of cardiovascular diseases.

MTORC1 is a serine/threonine protein kinase of the phosphatidylinositol 3-kinase (PI3K) protein family that regulates cell growth, proliferation, motility, survival, protein synthesis, and transcription. In cancer cells, the mTOR pathway is deregulated and signals tumor cells to grow, divide, and metastasize.

Investigators at the University of Iowa (Iowa City, USA) showed in the April 2, 2013, issue of the journal Cell Metabolism that mTOR signaling in the hypothalamus was tied to the activity of the sympathetic nervous system and to cardiovascular function.

Modulation of mTORC1 signaling caused dramatic changes in sympathetic traffic, blood flow, and arterial pressure. The data also demonstrated the importance of hypothalamic mTORC1 signaling in transducing the sympathetic and cardiovascular actions of leptin, a hormone produced by fat cells that has been implicated in obesity-related hypertension. Leptin activated mTORC1 in a specific part of the hypothalamus causing increased nerve activity and a rise in blood pressure. These effects were blocked by inhibiting activation of mTORC1.

"Our study shows that when this protein [mTORC1] is either activated or inhibited in a very specific manner, it can cause dramatic changes in blood pressure,” said senior author Dr. Kamal Rahmouni, associate professor of pharmacology and internal medicine at the University of Iowa. "Given the importance of this protein for the control of blood pressure, any abnormality in its activity might explain the hypertension associated with certain conditions like obesity and cardiovascular disease."

"Cardiovascular diseases are the leading cause of death worldwide, and hypertension is a major cardiovascular risk factor," said Dr. Rahmouni. "Our study identifies the protein called mTORC1 in the hypothalamus as a key player in the control of blood pressure. Targeting mTORC1 pathways may, therefore, be a promising strategy for the management of cardiovascular risk factors."

Related Links:

University of Iowa



Print article

Channels

Drug Discovery

view channel
Image: The “cellXpress” automated imaging analysis software enables to efficiently and accurately detect cellular responses (reflected in green) to nephrotoxic compounds (Photo courtesy of Agency for Science, Technology and Research (Singapore)).

First High-Throughput Imaging Platform for Predicting Kidney Toxicity of Chemicals

Researchers have developed a high-throughput platform of automated cellular imaging that efficiently and accurately predicts renal toxicity of chemical compounds without animal testing, providing an improved... Read more

Business

view channel

Purchase Agreement to Boost Ebola Vaccine Development

A deal to help boost development of a vaccine to protect against Ebolavirus infection was finalized at the recent Davos Conference in Switzerland. Gavi (Geneva, Switzerland), the global alliance for vaccines and immunizations, announced that it would spend five million USD to purchase the Ebola vaccine under development... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.