Features | Partner Sites | Information | LinkXpress
Sign In
Demo Company

Blocking Constant Interferon Signaling Allows the Immune System to Clear Chronic Viral Infections

By BiotechDaily International staff writers
Posted on 23 Apr 2013
Blocking constant Type I interferon (IFN-I) signaling in mice diminished chronic immune activation and immune suppression and enabled the animals' immune system to rejuvenate and ultimately clear persistent viral infections.

Interferons (IFNs) are glycoprotein cytokines made and released by host cells in response to the presence of pathogens such as viruses, bacteria, parasites, or tumor cells. They allow for communication between cells to trigger the protective defenses of the immune system that eradicate pathogens or tumors. Interferons were named after their ability to "interfere" with viral replication within host cells. IFNs have other functions: they activate immune cells, such as natural killer cells and macrophages; they increase recognition of infection or tumor cells by up-regulating antigen presentation to T-lymphocytes; and they increase the ability of uninfected host cells to resist new viral infection. Certain symptoms, such as aching muscles and fever, are related to the production of IFNs during infection. While Type I interferons (IFN-I) are critical for antiviral immunity, chronic IFN-I signaling is associated with hyperimmune activation and disease progression in persistent infections.

Investigators at the University of California, Los Angeles (USA) injected mice suffering from chronic viral infections with an antibody that temporarily blocked IFN-I activity.

They reported in the April 12, 2013, issue of the journal Science that the blockade of IFN-I signaling diminished chronic immune activation and immune suppression, restored lymphoid tissue architecture, and increased immune parameters associated with control of virus replication, ultimately facilitating clearance of the persistent infection. The accelerated control of persistent infection induced by blocking IFN-I signaling required CD4 T-cells and was associated with enhanced IFN-gamma production.

“When cells confront viruses, they produce Type I interferons, which trigger the immune system’s protective defenses and sets off an alarm to notify surrounding cells,” said senior author Dr. David Brooks, assistant professor of microbiology, immunology, and molecular genetics at the University of California, Los Angeles. “Type-I interferon is like the guy in the watch tower yelling, "Red alert,” when the marauders try to raid the castle.”

“What we saw was entirely illogical,” said Dr. Brooks. “We had blocked something critical for infection control and expected the immune system to lose the fight against infection. Instead, the temporary break in IFN-I signaling improved the immune system’s ability to control infection. Our next task will be to figure out why and how to harness it for therapies to treat humans.”

Related Links:
University of California, Los Angeles


Drug Discovery

view channel
Image: Use of catchphrase terms like “breakthrough” and “promising” in public news media presenting new drugs tends to result in incorrect assumptions and conclusions about the meaning and significance of criteria for FDA breakthrough-designated and accelerated-approval drugs (Photo courtesy of Dartmouth Institute).

Words That Inappropriately Enhance Perception of New Drug’s Effectiveness

Researchers have found that using the words “breakthrough” and “promising” in presenting a new drug to the general public often has a dramatic effect on judgment about its effectiveness.... Read more

Lab Technologies

view channel

New Genomic Research Kit Simplifies Exome Studies

An exciting new tool is now available for biotech researchers working in the field of genomic analysis. The human exome is critical to our genetic make-up and is generally accepted as having the greatest influence on how the genetic blueprint is utilized. The exome is defined as all coding exons in the genome and is... Read more


view channel

Collaboration Agreement to Boost Discovery of Fully Human Antibodies for Therapeutic Use

The discovery of fully human antibodies for therapeutic use will be boosted by a recently announced collaboration between a major university research center and a dynamic biopharmaceutical development company. Regeneron Pharmaceuticals, Inc. (Tarrytown, New York, USA) and The Experimental Therapeutics Institute (ETI)... Read more


17 Oct 2015 - 21 Oct 2015
25 Oct 2015 - 29 Oct 2015
16 Nov 2015 - 19 Nov 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.