Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Omega-3 Fatty Acid Derivative Slows Tumor Growth by Blocking Formation of New Blood Vessels

By BiotechDaily International staff writers
Posted on 18 Apr 2013
A metabolite derived from an omega-3 fatty acid slows tumor growth by blocking the development of new blood vessels (angiogenesis).

Investigators at the University of California, Davis (USA) worked with cancer cell cultures and mouse cancer models to examine the effects of omega-3 and omega-6 fatty acids on tumor growth.

They reported in the April 3, 2013, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that epoxy docosapentaenoic acid (EDP), a compound produced by the human body from the fish oil omega-3 fatty acid docosahexaenoic acid (DHA), inhibited primary tumor growth and metastasis by up to nearly 70%. The blocking of tumor growth was shown in a mouse cancer model to be due to EDP-mediated inhibition of vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2)-induced angiogenesis. In cancer cell cultures, EDP also suppressed the endothelial cell migration needed for new blood vessels.

In contrast, epoxyeicosatrienoic acids (EETs), metabolites of the omega-6 fatty acid arachidonic acid (ARA), slightly increased angiogenesis and tumor progression in mice.

“EDP works by a different mechanism than many current anticancer drugs that block angiogenesis,” said first author Dr. Guodong Zhang, a postdoctoral cancer researcher at the University of California, Davis. “Our investigation opens up a new understanding of the pathways by which omega-3 fatty acids exert their biologic effects. As far as we know, EDPs are the first signaling lipids that have been discovered to have such potent anticancer effects. Researchers may be able to use EDPs as structural targets to develop stable analogs as anticancer agents.”

Related Links:
University of California, Davis



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The European Commission has approved the use of Avastin combined with chemotherapy as a treatment for women with recurrent ovarian cancer (Photo courtesy of Genentech).

Drug for Treatment of Platinum Resistant Recurrent Ovarian Cancer Approved for Use in Europe

For the first time in more than 15 years the European Commission (EC) has approved a new therapeutic option for the most difficult to treat form of ovarian cancer. Ovarian cancer causes more deaths... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel
Image: The DrySyn MULTI converts any standard hotplate stirrer into a high performance reaction block (Photo courtesy of Asynt).

New Reaction Vessel Heating System Is Cleaner and Safer

Biotech and other life science researchers can create a safer, cleaner, and more efficient working environment in their laboratories by switching from oil bath-based heating of reaction vessels to a new... Read more

Business

view channel

Global Computational Biology Sector Expected to Reach over USD 4 Billion by 2020

The global market for computational biology is expected to reach USD 4.285 billion by 2020 growing at a compound annual growth rate (CAGR) of 21.1%, according to new market research. Steady surge in the usage and application of computational biology for bioinformatics R&D programs designed for sequencing genomes... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.