Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

10 Oct 2016 - 12 Oct 2016
12 Nov 2016 - 16 Nov 2016

Omega-3 Fatty Acid Derivative Slows Tumor Growth by Blocking Formation of New Blood Vessels

By BiotechDaily International staff writers
Posted on 18 Apr 2013
Print article
A metabolite derived from an omega-3 fatty acid slows tumor growth by blocking the development of new blood vessels (angiogenesis).

Investigators at the University of California, Davis (USA) worked with cancer cell cultures and mouse cancer models to examine the effects of omega-3 and omega-6 fatty acids on tumor growth.

They reported in the April 3, 2013, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that epoxy docosapentaenoic acid (EDP), a compound produced by the human body from the fish oil omega-3 fatty acid docosahexaenoic acid (DHA), inhibited primary tumor growth and metastasis by up to nearly 70%. The blocking of tumor growth was shown in a mouse cancer model to be due to EDP-mediated inhibition of vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2)-induced angiogenesis. In cancer cell cultures, EDP also suppressed the endothelial cell migration needed for new blood vessels.

In contrast, epoxyeicosatrienoic acids (EETs), metabolites of the omega-6 fatty acid arachidonic acid (ARA), slightly increased angiogenesis and tumor progression in mice.

“EDP works by a different mechanism than many current anticancer drugs that block angiogenesis,” said first author Dr. Guodong Zhang, a postdoctoral cancer researcher at the University of California, Davis. “Our investigation opens up a new understanding of the pathways by which omega-3 fatty acids exert their biologic effects. As far as we know, EDPs are the first signaling lipids that have been discovered to have such potent anticancer effects. Researchers may be able to use EDPs as structural targets to develop stable analogs as anticancer agents.”

Related Links:
University of California, Davis



Print article

Channels

Drug Discovery

view channel
Image: Ginger is the source of a novel class of nanolipid transport vector (Photo courtesy of Georgia State University).

Ginger-Derived Doxorubicin-Loaded Nanovectors as Drug Delivery for Cancer Therapy

A novel type of nanoparticle drug transport system based on lipids isolated from ginger was used to deliver the toxic chemotherapeutic agent doxorubicin (Dox) to colon cancer cells with minimal damage... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

Collaborative Agreement to Aid in Setting Guidelines for Evaluating Potential Ebola Therapy

Cooperation between an Israeli biopharmaceutical company and medical branches of the US government is designed to set ground rules for continued evaluation of an experimental therapy for Ebola virus disease. RedHill Biopharma Ltd. (Tel Aviv, Israel), a biopharmaceutical company primarily focused on development and c... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.