Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Omega-3 Fatty Acid Derivative Slows Tumor Growth by Blocking Formation of New Blood Vessels

By BiotechDaily International staff writers
Posted on 18 Apr 2013
A metabolite derived from an omega-3 fatty acid slows tumor growth by blocking the development of new blood vessels (angiogenesis).

Investigators at the University of California, Davis (USA) worked with cancer cell cultures and mouse cancer models to examine the effects of omega-3 and omega-6 fatty acids on tumor growth.

They reported in the April 3, 2013, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that epoxy docosapentaenoic acid (EDP), a compound produced by the human body from the fish oil omega-3 fatty acid docosahexaenoic acid (DHA), inhibited primary tumor growth and metastasis by up to nearly 70%. The blocking of tumor growth was shown in a mouse cancer model to be due to EDP-mediated inhibition of vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2)-induced angiogenesis. In cancer cell cultures, EDP also suppressed the endothelial cell migration needed for new blood vessels.

In contrast, epoxyeicosatrienoic acids (EETs), metabolites of the omega-6 fatty acid arachidonic acid (ARA), slightly increased angiogenesis and tumor progression in mice.

“EDP works by a different mechanism than many current anticancer drugs that block angiogenesis,” said first author Dr. Guodong Zhang, a postdoctoral cancer researcher at the University of California, Davis. “Our investigation opens up a new understanding of the pathways by which omega-3 fatty acids exert their biologic effects. As far as we know, EDPs are the first signaling lipids that have been discovered to have such potent anticancer effects. Researchers may be able to use EDPs as structural targets to develop stable analogs as anticancer agents.”

Related Links:
University of California, Davis



Channels

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.