Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

Immobilized Lytic Enzymes Prevent Listeria Growth on Food-related Surfaces

By BiotechDaily International staff writers
Posted on 18 Apr 2013
Print article
A coating of stabilized bacteriophage lytic enzymes could prevent Listeria from surviving on equipment and packaging used in the food industry.

Listeria is a genus of bacteria, of which the most common species is Listeria monocytogenes, commonly found in soil, on unwashed vegetables, and in unpasteurized soft cheeses. These bacteria resist cold and the presence of salt and can cause food poisoning (listeriosis) with flu-like symptoms such as high fever and dizziness. While healthy individuals may not have any symptoms, those with compromised immune systems such as pregnant women, infants, and the elderly are especially at risk.

Investigators at Rensselaer Polytechnic Institute (Troy, NY, USA) previously developed a coating that could kill methicillin-resistant Staphylococcus aureus (MRSA) without antibiotics. In the present study, they observed that while a number of phage cell lytic enzymes against Listeria had been isolated, no attempt had been made to incorporate these enzymes onto surfaces.

The investigators described in the April 2, 2013, online edition of the journal Scientific Reports the development of three simple routes for the surface incorporation of the Listeria bacteriophage endolysin Ply500. These routes included covalent attachment onto [US] Food and Drugs Administration (FDA)-approved silica nanoparticles (SNPs), incorporation of SNP-Ply500 conjugates into a thin poly(hydroxyethyl methacrylate) film, and affinity binding to edible crosslinked starch nanoparticles via construction of a maltose binding protein fusion.

Testing of these coated surfaces revealed that these Ply500 formulations were effective in killing L. innocua (a reduced pathogenic surrogate) at challenges up to 100,000 colony-forming units per milliliter both in non-growth-sustaining buffer solution as well as under growth conditions on lettuce. This is a significantly higher concentration of bacteria than is normally found in contaminated food.

"In this study, we have identified a new strategy for selectively killing specific types of bacteria. Stable enzyme-based coatings or sprays could be used in food supply infrastructure—from picking equipment to packaging to preparation—to kill Listeria before anyone has a chance to get sick from it," said contributing author Dr. Ravi Kane, professor of chemical and biological engineering at Rensselaer Polytechnic Institute. "What is most exciting is that we can adapt this technology for all different kinds of harmful or deadly bacteria."

Related Links:
Rensselaer Polytechnic Institute



Print article

Channels

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.