Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Chronic Inflammation Maintained by the Immunosuppressive Action of TNF-alpha

By BiotechDaily International staff writers
Posted on 18 Apr 2013
Researchers studying how the immune system deals with chronic inflammation have found that the cytokine tumor necrosis factor-alpha (TNF-alpha) exhibits a dual function during chronic inflammation that results in the formation of an immunosuppressive environment that supports the continuation of the inflammatory condition.

TNF is primarily produced as a 212-amino acid-long type II transmembrane protein arranged in stable homotrimers. From this membrane-integrated form, the soluble homotrimeric cytokine (sTNF) is released via proteolytic cleavage by the metalloprotease TNF-alpha converting enzyme (TACE). The soluble 51-kDa trimeric sTNF tends to dissociate at concentrations below the nanomolar range, thereby losing its bioactivity. The secreted form of human TNF-alpha takes on a triangular pyramid shape, and weighs around 17 kDa. Both the secreted and the membrane bound forms are biologically active and have both overlapping and distinct biology activities. TNF-alpha is particularly important as a part of the body's inflammatory response and in normal circumstances (where it is released locally in low levels) helps the immune system defeat pathogens. However, when it is systemically released in the blood and in high levels, it can cause severe and life-threatening symptoms, including shock and multiple organ failure.

Investigators at the Hebrew University of Jerusalem (Israel) had shown previously that in the course of chronic inflammation, myeloid derived suppressor cells (MDSCs)—unique immune system cells with suppressive features—were generated in the bone marrow and migrated into various organs and the blood, imposing a general immune suppression. In the current work, they linked the generation of MDSCs to the activity of TNF-alpha.

Results reported in the March 21, 2013, issue of the journal Immunity revealed that in a mouse model TNF-alpha exhibited a dual function during chronic inflammation. It blocked differentiation of immature MDSCs primarily via the S100A8 and S100A9 inflammatory proteins and their corresponding receptor (RAGE) and augmented MDSC suppressive activity. These functions led to in vivo T- and NK-cell dysfunction accompanied by T-cell antigen receptor zeta-chain downregulation. This activity impaired the animals' immune responses as reflected by their inability to respond against invading pathogens or against developing tumors.

However, administration of the drug etanercept (a TNF-alpha antagonist) during early chronic inflammatory stages reduced MDSCs’ suppressive activity and enhanced their maturation into dendritic cells and macrophages, resulting in the restoration of in vivo immune functions and recovery of zeta chain expression.

These results provide new insights into the relationship between TNF-alpha and the development of immune suppression during chronic inflammation. They may aid in the generation of better therapeutic strategies against various pathologies involving elevated TNF-alpha and MDSC levels.

Related Links:
Hebrew University of Jerusalem


Channels

Drug Discovery

view channel
Image: Wafers like the one shown here are used to create “organ-on-a-chip” devices to model human tissue (Photo courtesy of Dr. Anurag Mathur, University of California, Berkeley).

Human Heart-on-a-Chip Cultures May Replace Animal Models for Drug Development and Safety Screening

Human heart cells growing in an easily monitored silicon chip culture system may one day replace animal-based model systems for drug development and safety screening. Drug discovery and development... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.