Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Genetics of Hemophilia Mystery Solved

By BiotechDaily International staff writers
Posted on 25 Mar 2013
The third and final missing piece in the genetic puzzle of an unusual form of hemophilia has been found which could help improve the comprehension of other blood-clotting conditions such as thrombosis.

Hemophilia B Leyden is an X-linked recessive blood-clotting disorder that affects approximately 1 in every 30,000 males and it is also infamously known as the ‘‘royal disease’’ because it afflicted European royal families descended from Queen Victoria.

Geneticists at the University of New South Wales (Kensington, Australia) studied mutations that arise in coagulation factor IX (F9). Mutations within the F9 promoter are associated with the hemophilia B Leyden subtype in which symptoms ameliorate after puberty. Symptoms improve in young men after puberty because a different protein that responds to the hormone testosterone is able to bind to the DNA and boost the gene’s production of clotting factor IX. The disease affects about 80 families worldwide.

The scientists established that the missing regulators in hemophilia B Leyden are the ONECUT transcription factors ONECUT1 and ONECUT2. These proteins bind to the proximal promoter and drive expression of F9. ONECUT1 is also known as hepatocyte nuclear factor 6 (HNF6), while ONECUT2 is known either as hepatocyte nuclear factor 6-beta or one cut homeobox 2. The different Leyden mutations disrupt ONECUT binding to varying degrees in a manner that correlates well with their clinical severities.

Merlin Crossley, PhD, the dean of science at University of New South Wales and senior author of the study, said, “Science is advanced by people who get caught up in puzzles that are important to them and they never forget them. Curious investigators never give up.” Professor Crossley had previously found the two sets of mutations that prevent two key proteins from attaching to the DNA, which turns the gene off as a result. The study was published on March 7, 2013, in the American Journal of Human Genetics.

Related Links:

University of New South Wales





comments powered by Disqus

Channels

Drug Discovery

view channel
Image: Disruption and removal of malaria parasites by the experimental drug (+)-SJ733 (Photo courtesy of the University of California, San Francisco).

Experimental Antimalaria Drug Induces the Immune System to Destroy Infected Red Blood Cells

An experimental drug for the treatment of malaria was found to induce morphological changes in infected erythrocytes that enabled the immune system to recognize and eliminate them. Investigators at... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Business

view channel

R&D Partnership Initiated to Reduce Development Time for New Drugs

nanoPET Pharma, GmbH (Berlin, Germany) signed an open-ended framework contract with the international pharmaceutical company Boehringer Ingelheim (Ridgefield, CT, USA). By developing customized contrast agents for research in both basic and preclinical studies, nanoPET Pharma will contribute to the enhancement of Boehringer... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.