Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
PZ HTL SA
GLOBETECH PUBLISHING

Genetics of Hemophilia Mystery Solved

By BiotechDaily International staff writers
Posted on 25 Mar 2013
The third and final missing piece in the genetic puzzle of an unusual form of hemophilia has been found which could help improve the comprehension of other blood-clotting conditions such as thrombosis.

Hemophilia B Leyden is an X-linked recessive blood-clotting disorder that affects approximately 1 in every 30,000 males and it is also infamously known as the ‘‘royal disease’’ because it afflicted European royal families descended from Queen Victoria.

Geneticists at the University of New South Wales (Kensington, Australia) studied mutations that arise in coagulation factor IX (F9). Mutations within the F9 promoter are associated with the hemophilia B Leyden subtype in which symptoms ameliorate after puberty. Symptoms improve in young men after puberty because a different protein that responds to the hormone testosterone is able to bind to the DNA and boost the gene’s production of clotting factor IX. The disease affects about 80 families worldwide.

The scientists established that the missing regulators in hemophilia B Leyden are the ONECUT transcription factors ONECUT1 and ONECUT2. These proteins bind to the proximal promoter and drive expression of F9. ONECUT1 is also known as hepatocyte nuclear factor 6 (HNF6), while ONECUT2 is known either as hepatocyte nuclear factor 6-beta or one cut homeobox 2. The different Leyden mutations disrupt ONECUT binding to varying degrees in a manner that correlates well with their clinical severities.

Merlin Crossley, PhD, the dean of science at University of New South Wales and senior author of the study, said, “Science is advanced by people who get caught up in puzzles that are important to them and they never forget them. Curious investigators never give up.” Professor Crossley had previously found the two sets of mutations that prevent two key proteins from attaching to the DNA, which turns the gene off as a result. The study was published on March 7, 2013, in the American Journal of Human Genetics.

Related Links:

University of New South Wales





Channels

Drug Discovery

view channel

Retinoic Acid Prevents Precancerous Breast Cells from Progressing to Full-Blown Cancer

Retinoic acid, a derivative of vitamin A, was found to prevent pre-cancerous breast cells from progressing to full-blown cancer but did not have any effect on breast tumor cells. Investigators at Thomas Jefferson University (Philadelphia, PA, USA) worked with a novel breast cancer model that had been developed by treating... Read more

Biochemistry

view channel

Mitochondrial Cause of Aging Can Be Reversed

Researchers have found a cause of aging in lab animals that can be reversed, possibly providing an avenue for new treatments for age-related diseases including type 2 diabetes, cancer, muscle wasting, and inflammatory diseases. The researchers plan to begin human trials late 2014. The study, which was published December... Read more

Therapeutics

view channel

Cytokine Identified That Causes Mucositis in Cancer Therapy Patients

The action of the cytokine interleukin 1-beta (IL-1beta) has been found to underlie the onset of mucositis, a common, severe side effect of chemotherapy and irradiation of cancer patients. Mucositis occurs as a result of cell death in reaction to chemo- or radiotherapy. The mucosal lining of the mouth becomes thin, may... Read more

Business

view channel

Analytical Sciences Trade Fair Declared a Rousing Success

Organizers of this year's 24th "analytica" biosciences trade fair have reported significant increases in both the number of visitors and exhibitors compared to the 2012 event. The analytica trade fair for laboratory technology, analysis, and biotechnology has been held at the Munich (Germany) Trade Fair Center every... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.