Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

05 Mar 2017 - 09 Mar 2017
20 Mar 2017 - 23 Mar 2017
12 Apr 2017 - 14 Apr 2017

Blocking New Blood Vessel Formation Cures Alzheimer's Disease in Mouse Model

By BiotechDaily International staff writers
Posted on 21 Mar 2013
ADVERTISEMENT
SARTORIUS AG
Vaccination of mice with a syndrome that mimics human Alzheimer's disease (AD) with amyloid-beta protein normalized the production of bloods vessels in the brains of the animals and eliminated the accumulation of amyloid plaque.

Investigators at the University of British Columbia (Vancouver, Canada) worked with the Tg2576 mouse AD model. In addition to the characteristic amyloid-beta (A-beta) plaques that characterize the brain in AD, these animals displayed an abnormal number of brain blood vessels. Some of these blood vessels were incomplete and caused leakiness in the blood-brain barrier (BBB).

The investigators immunized a group of Tg2576 mice with peptides derived from the amyloid-beta protein. They reported in the February 28, 2013, online edition of the journal Scientific Reports that immunization with A-beta peptides neutralized the amyloid trigger leading to formation of new blood vessels and reversed the abnormal number of these vessels in the Tg2576 AD mice. Reduction in number of blood vessels resolved the animals' plaque burden, suggesting that formation of new blood vessels (neoangiogenesis) was a key mechanism underlying plaque formation.

“The discovery provides further evidence of the role that an overabundance of brain blood vessels plays in AD, as well as the potential efficacy of amyloid-beta as basis for an AD vaccine,” said senior author Dr.Wilfred Jefferies, professor of medical genetics at the University of British Columbia. “Now that we know blood vessel growth is a factor in AD, if follows that drugs targeting blood vessels may be good candidates as an AD treatment.”

Related Links:
University of British Columbia



Channels

Drug Discovery

view channel
Image: The experimental drug NGI-1 slows cancer growth by blocking glycosylation of the epidermal growth factor receptor (EGFR), which is shown in the above diagram (Photo courtesy of Wikimedia Commons).

Experimental Drug Slows Lung Cancer Growth by Blocking Protein Glycosylation

An interesting new experimental anti-cancer drug slows growth of certain lung tumor cells by preventing the glycosylation of critical cell surface receptor proteins. Asparagine (N)-linked glycosylation... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

Collaborative Agreement to Aid in Setting Guidelines for Evaluating Potential Ebola Therapy

Cooperation between an Israeli biopharmaceutical company and medical branches of the US government is designed to set ground rules for continued evaluation of an experimental therapy for Ebola virus disease. RedHill Biopharma Ltd. (Tel Aviv, Israel), a biopharmaceutical company primarily focused on development and c... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.