Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Protectin D1 Prevents Bird Flu Infection in Mouse Model

By BiotechDaily International staff writers
Posted on 21 Mar 2013
The omega-3 polyunsaturated fatty acid (PUFA)-derived lipid mediator glycoprotein protectin D1 (PD1) prevents infection by the influenza virus, including the deadly H5N1 strain of bird flu, in a mouse model.

Around 60% of humans known to have been infected with the current Asian strain of bird flu (H5N1) have died from it, and virologists fear that H5N1 may mutate or undergo an antigenic shift into a strain capable of efficient human-to-human transmission.

PD1, which is also known as CD59 complement regulatory protein, is a cell surface glycoprotein that regulates complement-mediated cell lysis and is involved in lymphocyte signal transduction. This protein is a potent inhibitor of the complement membrane attack complex, whereby it binds complement C8 and/or C9 during the assembly of this complex, thereby inhibiting the incorporation of multiple copies of C9 into the complex, which is necessary for osmolytic pore formation. Viruses such as HIV, human cytomegalovirus, and vaccinia incorporate host cell PD1 into their own viral envelope to prevent lysis by complement. PD1 also plays a role in signal transduction pathways in the activation of T-cells.

Investigators at Akita University (Japan) screened compounds for their ability to inhibit influenza virus replication in human lung tissue. The most active compound they found was PD1. Results published in the March 7, 2013, online edition of the journal Cell revealed that PD1 markedly lessened influenza virus replication via RNA export machinery. Production of PD1 was suppressed during severe influenza, and PD1 levels inversely correlated with the pathogenicity of H5N1 viruses. PD1 treatment improved the survival and pathology of mice with severe influenza infection, even under conditions where known antiviral drugs failed to protect from death.

"Given the potential for future lethal pandemics, effective drugs are needed for the treatment of severe influenza, such as that caused by H5N1 viruses," said senior author Dr. Yumiko Imai, professor of experimental medicine at Akita University. "We have identified a novel therapeutic target for the treatment of severe influenza that is effective under conditions where known antiviral drugs fail to protect from death. Our findings suggest that PD1could serve as a biomarker as well as a much needed antiviral drug for severe and lethal influenza virus infections."

Related Links:

Akita University




Channels

Genomics/Proteomics

view channel
Image: Transmission electron micrograph of norovirus particles in feces (Photo courtesy of Wikimedia Commons).

Norovirus Interacts with Gut Bacteria to Establish a Persistent Infection That Can Be Blocked by Interferon Lambda

A team of molecular microbiologists and virologists has found that norovirus requires an intimate interaction with certain gut bacteria to establish a persistent infection, and that the infective process... Read more

Biochemistry

view channel
Image: Induced pluripotent stem (iPS) cells, which act very much like embryonic stem cells, are shown growing into heart cells (blue) and nerve cells (green) (Photo courtesy of Gladstone Institutes/Chris Goodfellow).

Methodology Devised to Improve Stem Cell Reprogramming

In a study that provides scientists with a critical new determination of stem cell development and its role in disease, researchers have established a first-of-its-kind approach that outlines the stages... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.