Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

Green Tea Extract EGCG Blocks Amyloid Plaque Formation in Brain Cell Cultures

By BiotechDaily International staff writers
Posted on 20 Mar 2013
The green tea extract, (−)-epigallocatechin-3-gallate (EGCG) prevented formation of metal-associated amyloid-beta plaques in brain cell cultures and dissolved plaques that had already formed.

EGCG is the most abundant catechin in tea and is a potent antioxidant that may have therapeutic applications in the treatment of many disorders. It is found in green tea but not black tea.

Alzheimer's disease investigators at the University of Michigan (Ann Arbor, USA) investigated and compared the interaction and reactivity of EGCG with metal (copper and zinc) and metal-free A-beta species. Such a study was considered necessary, as chelation therapy, which involves the removal of heavy metals from the body, has been shown to be beneficial in lowering amyloid plaque levels. This is because A-beta aggregation is somewhat dependent on the metal ions copper and zinc, and A-beta deposition was impeded in transgenic mice treated with the antibiotic clioquinol, a known copper/zinc chelator.

In the current study, a team comprising chemists, biochemists, and biophysicists used advanced analytical techniques including ion mobility-mass spectrometry (IM-MS), two-dimensional NMR spectroscopy, and computational methods to study the interaction of EGCG and A-beta plaques in cultures of human brain cells.

They reported in the February 20, 2013, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that EGCG interacted with metal-A-beta species and formed small, unstructured A-beta aggregates more noticeably than in metal-free conditions. Incubation of cells with EGCG eliminated the toxicity presented by both metal-free A-beta and metal-A-beta plaques. EGCG bound to A-beta monomers and dimers, generating more compact peptide conformations than those from EGCG-untreated A-beta species and nontoxic ternary EGCG-metal-A-beta complexes were produced.

"A lot of people are very excited about this molecule," said senior author Dr. Mi Hee Lim, assistant professor of chemistry at the University of Michigan. "We used a multidisciplinary approach. This is the first example of structure-centric, multidisciplinary investigations by three principal investigators with three different areas of expertise. But we believe you have to have a lot of approaches working together, because the brain is very complex. We want to modify them [molecules like EGCG] for the brain, specifically to interfere with the plaques associated with Alzheimer's."

Related Links:

University of Michigan




BIOSIGMA S.R.L.
SLAS - Society for Laboratory Automation and Screening
RANDOX LABORATORIES
comments powered by Disqus

Channels

Drug Discovery

view channel

Omega 3 Found to Improve Behavior in Children with ADHD

Supplements of the fatty acids omega 3 and 6 can help children and adolescents who have a specific kind of have attention deficit hyperactivity disorder (ADHD). Moreover, these findings indicate that a customized cognitive training program can improve problem behavior in children with ADHD. Statistics show that 3%–6%... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Lab Technologies

view channel

e-Incubator Technology Provides Real-Time Imaging of Bioengineered Tissues in a Controlled Unit

A new e-incubator, an innovative miniature incubator that is compatible with magnetic resonance imaging (MRI), enables scientists to grow tissue-engineered constructs under a controlled setting and to study their growth and development in real time without risk of contamination or damage. Offering the potential to test... Read more

Business

view channel

Two Industry Partnerships Initiated to Fuel Neuroscience Research

Faster, more complex neural research is now attainable by combining technology from two research companies. Blackrock Microsystems, LLC (Salt Lake City, UT, USA), a developer of neuroscience research equipment, announced partnerships with two neuroscience research firms—PhenoSys, GmbH (Berlin, Germany) and NAN Instruments, Ltd.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.