Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Green Tea Extract EGCG Blocks Amyloid Plaque Formation in Brain Cell Cultures

By BiotechDaily International staff writers
Posted on 20 Mar 2013
The green tea extract, (−)-epigallocatechin-3-gallate (EGCG) prevented formation of metal-associated amyloid-beta plaques in brain cell cultures and dissolved plaques that had already formed.

EGCG is the most abundant catechin in tea and is a potent antioxidant that may have therapeutic applications in the treatment of many disorders. It is found in green tea but not black tea.

Alzheimer's disease investigators at the University of Michigan (Ann Arbor, USA) investigated and compared the interaction and reactivity of EGCG with metal (copper and zinc) and metal-free A-beta species. Such a study was considered necessary, as chelation therapy, which involves the removal of heavy metals from the body, has been shown to be beneficial in lowering amyloid plaque levels. This is because A-beta aggregation is somewhat dependent on the metal ions copper and zinc, and A-beta deposition was impeded in transgenic mice treated with the antibiotic clioquinol, a known copper/zinc chelator.

In the current study, a team comprising chemists, biochemists, and biophysicists used advanced analytical techniques including ion mobility-mass spectrometry (IM-MS), two-dimensional NMR spectroscopy, and computational methods to study the interaction of EGCG and A-beta plaques in cultures of human brain cells.

They reported in the February 20, 2013, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that EGCG interacted with metal-A-beta species and formed small, unstructured A-beta aggregates more noticeably than in metal-free conditions. Incubation of cells with EGCG eliminated the toxicity presented by both metal-free A-beta and metal-A-beta plaques. EGCG bound to A-beta monomers and dimers, generating more compact peptide conformations than those from EGCG-untreated A-beta species and nontoxic ternary EGCG-metal-A-beta complexes were produced.

"A lot of people are very excited about this molecule," said senior author Dr. Mi Hee Lim, assistant professor of chemistry at the University of Michigan. "We used a multidisciplinary approach. This is the first example of structure-centric, multidisciplinary investigations by three principal investigators with three different areas of expertise. But we believe you have to have a lot of approaches working together, because the brain is very complex. We want to modify them [molecules like EGCG] for the brain, specifically to interfere with the plaques associated with Alzheimer's."

Related Links:

University of Michigan




Channels

Drug Discovery

view channel
Image: Researchers have attached two drugs—TRAIL and Dox—onto graphene strips. TRAIL is most effective when delivered to the external membrane of a cancer cell, while Dox is most effective when delivered to the nucleus, so the researchers designed the system to deliver the drugs sequentially, with each drug hitting a cancer cell where it will do the most damage (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Anticancer Drug Delivery System Utilizes Graphene Strip Transporters

The ongoing search by cancer researchers for targeted drug delivery systems has generated a novel approach that uses graphene strips to transport simultaneously the anticancer agents TRAIL (tumor necrosis... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Biotech Acquisition Designed to Accelerate the Development and Marketing of Immunosequencing Applications

Adaptive Biotechnologies Corp. (Seattle, WA, USA), a developer of next-generation sequencing (NGS) to profile T-cell and B-cell receptors, has acquired of Sequenta, Inc. (South San Francisco, CA, USA), which is expected to expedite and expand the use of innovative immunosequencing technology for researchers and clinicians... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.