Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Combination Gene and Stem Cell Therapy Cures Muscular Dystrophy in Mouse Model

By BiotechDaily International staff writers
Posted on 19 Mar 2013
In a "proof-of-principle" study, researchers have shown that it was possible to cure Duchenne Muscular Dystrophy (DMD) in a mouse model using a combination of gene and stem cell therapy.

Investigators at the University of Minnesota (Minneapolis, USA) began by reprogramming skin cells taken from DMD mice back into an undifferentiated pluripotent stem cell stage. They then employed a gene therapy approach based on the "Sleeping Beauty Transposon" to incorporate the gene for the protein utrophin into the stem cells. Utrophin can substitute for the defective protein dystrophin, which characterizes DMD, without generating an autoimmune response.

The last step was to treat the modified pluripotent cells with the muscle stem cell protein Pax3 (paired box 3), which induced the stem cells to differentiate into muscle cells. Pax3 is expressed in early embryonic growth where it helps to demarcate the paraxial mesoderm. In that way, PAX3 contributes to early striated muscle development since all myoblasts are derived from the paraxial mesoderm.

The modified stem cells were injected into DMD mice. Results published in the March 5, 2013, online edition of the journal Nature Communications revealed that the stem cells were incorporated into muscle tissue that displayed large numbers of micro-utrophin-positive myofibers, with biochemically restored dystrophin–glycoprotein complexes, and improved contractile strength.

"Developing methods to genetically repair muscular dystrophy in human cells, and demonstrating efficacy of muscle derived from these cells are critical near-term milestones, both for the field and for our laboratory," said senior author Dr. Rita Perlingeiro, associate professor of medicine at the University of Minnesota. "Testing in animal models is essential to developing effective technologies, but we remained focused on bringing these technologies into use in human cells and setting the stage for trials in human patients."

"We were pleased to find the newly formed myofibers expressed the markers of the correction, including utrophin," said, Dr. Perlingeiro. "However, a very important question following transplantation is if these corrected cells would self-renew, and produce new muscle stem cells in addition to the new muscle fibers."

Related Links:

University of Minnesota



comments powered by Disqus

Channels

Drug Discovery

view channel

Ibuprofen May Restore Immune Function in Older Individuals

New research suggests that macrophages from the lungs of old mice respond differently to infections than those of young mice, and ibuprofen given to the mice reversed these changes. New research using lab mice suggests that the solution to more youthful immune function might already be a common over-the-counter pain reliever.... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Lab Technologies

view channel
Image: Leica Microsystems launches the inverted research microscope platform Leica DMi8 (Photo courtesy of Leica Microsystems).

New Inverted Microscope Designed to Readily Adapt to Changing Research Demands

A new inverted microscope for biotech and other life science laboratories was designed to readily accommodate modifications and upgrades to allow it to keep current with changing research demands and interests.... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.