Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PZ HTL SA

Increased Dietary Salt Causes Autoimmune Diseases by Stimulating Formation of Proinflammatory TH17 Cells

By BiotechDaily International staff writers
Posted on 19 Mar 2013
Three recent papers linked elevated dietary salt to the development of autoimmune diseases such as multiple sclerosis and type I diabetes by demonstrating the relationship between salt levels and the generation of T helper 17 (TH17) cells.

TH17 cells (interleukin-17 (IL-17)-producing helper T cells) are highly pro-inflammatory cells that are critical for clearing extracellular pathogens and for inducing multiple autoimmune diseases. To study the effect of salt concentration on TH17 cell metabolism investigators at Harvard Medical School (Boston, MA, USA) and Yale School of Medicine (New Haven, CT, USA) worked with cell cultures and with mouse populations where it was easy to adjust the level of dietary salt.

Details of the research and results were published in three papers that appeared in the March 6, 2013, online edition of the journal Nature. Among other factors, the investigators identified the protein serum glucocorticoid kinase 1 (SGK1), which is known to regulate salt levels in other types of cells, as a TH17-signal. The researchers found that mouse cells cultured in high-salt conditions had higher SGK1 expression and produced more TH17 cells than those grown in normal conditions. A modest increase in salt concentration induced SGK1 expression, promoted interleukin-23R expression, and enhanced TH17 cell differentiation in vitro and in vivo, accelerating the development of autoimmunity.

High-salt conditions activated the p38/MAPK pathway involving nuclear factor of activated T cells 5 (NFAT5; also called TONEBP) and SGK1 during cytokine-induced TH17 polarization. Gene silencing or chemical inhibition of p38/MAPK, NFAT5, or SGK1 abolished the high-salt-induced TH17 cell development. TH17 cells generated under high-salt conditions displayed a highly pathogenic and stable phenotype characterized by the upregulation of the proinflammatory cytokines.

"Humans were genetically selected for conditions in sub-Saharan Africa, where there was no salt," said senior author Dr. David Hafler, professor of neurology and immunobiology at Yale School of Medicine. "Today, Western diets all have high salt content and that has led to increase in hypertension and perhaps autoimmune disease as well. These are not diseases of bad genes alone or diseases caused by the environment, but diseases of a bad interaction between genes and the environment."

"Test-tube cell biology is performed based on the salt levels found in blood and not in the tissues where immune cells ultimately travel to fight infections," said Dr. Hafler. "That may have been a reason salt's role in autoimmunity has gone undetected. We may have been using the wrong concentrations of salt in our experiments for the past half-century. Nature did not want immune cells to become turned on in the pipeline, so perhaps blood salt levels are inhibitory."

Related Links:

Harvard Medical School
Yale School of Medicine



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.