Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Novel Chemical Probe Targets Malignant Brain Tumor Genome

By BiotechDaily International staff writers
Posted on 14 Mar 2013
Image: The chemical probe UNC1215 will be used to investigate the function of malignant brain tumor-domain protein, L3MBTL3, and study its role in different signaling pathways and disease (Photo courtesy of Frye Lab, University of North Carolina).
Image: The chemical probe UNC1215 will be used to investigate the function of malignant brain tumor-domain protein, L3MBTL3, and study its role in different signaling pathways and disease (Photo courtesy of Frye Lab, University of North Carolina).
The development of a chemical probe that specifically targets the L3MBTL3 methyl-lysine reader domain will enable cancer researchers to investigate the function of malignant brain tumor (MBT) domain proteins in biology and disease.

L3MBTL3 (lethal(3)malignant brain tumor-like protein 3), which is required for normal maturation of myeloid progenitor cells, is a Polycomb group (PcG) protein. PcG proteins are a family of proteins first discovered in fruit flies that can remodel chromatin so that epigenetic silencing of genes takes place. In humans Polycomb Group gene expression is important in many aspects of development. Mouse mutants lacking PRC2 (Polycomb Repressive Complex 2) genes die as embryos while most PRC1 (Polycomb Repressive Complex 1) mutants are born alive but with anatomic rearrangements that cause them to die shortly after birth. In contrast, overexpression of PcG proteins correlates with the severity and invasiveness of several cancer types.

A recent paper by investigators at the University of North Carolina (Chapel Hill, USA) described the use of the novel chemical probe UNC1215 for research on L3MBTL3. UNC1215 is a potent and selective chemical probe for the Kme reading function of L3MBTL3. Kme (methyl-lysine) recognition domains play a central role in epigenetic regulation during cellular differentiation, development, and gene transcription with more than 200 known “reader” domains in the human proteome. UNC1215 binds the MBT domains of L3MBTL3 and competitively displaces mono- or dimethyl-lysine containing peptides. This probe is greater than 50-fold more selective towards L3MBTL3 than towards other members of the human MBT family and also demonstrates selectivity against more than 200 other Kme reader domains.

Results obtained by X-ray crystallography published in the March 2013 issue of the journal Nature Chemical Biology revealed a unique 2:2 polyvalent mode of interaction between UNC1215 and L3MBTL3. In cells, UNC1215 was found to be nontoxic and bound to L3MBTL3 via the Kme-binding pocket of the MBT domains.

"Before this there were no known chemical probes for the more than 200 domains in the human genome that recognize methyl lysine. In that regard, it is a first in class compound. The goal is to use the chemical probe to understand the biology of the proteins that it targets," said first author Dr. Lindsey James, research assistant professor of chemical biology and medicinal chemistry at the University of North Carolina.

To promote research on the biology of malignant brain tumors the University of North Carolina will provide investigators with samples of UNC1215 free of charge on request.

Related Links:
University of North Carolina



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells (Photo courtesy of the University of Texas, Austin).

Experimental Drug Kills Cancer Cells by Interfering with Their Ion Transport Mechanism

An experimental anticancer drug induces cells to enter a molecular pathway leading to apoptosis by skewing their ion transport systems to greatly favor the influx of chloride anions. To promote development... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.