Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PZ HTL SA

Protein Chimera Activates Antitumor Immunity in Mouse Model

By BiotechDaily International staff writers
Posted on 14 Mar 2013
Cancer researchers have synthesized a chimeric protein comprising the large stress protein or chaperone Grp170 and a fragment of the bacterial protein flagellin that blocked tumor growth and metastasis by mobilizing or restoring antitumor immunity.

Molecular chaperones are proteins and protein complexes that bind to misfolded or unfolded polypeptide chains and affect the subsequent folding processes of these chains. All proteins are created at the ribosome as straight chains of amino acids, but must be folded into a precise, three-dimensional conformation in order to perform their specific functions. The misfolded or unfolded polypeptide chains to which chaperones bind are said to be "non-native," meaning that they are not folded into their functional conformation. Chaperones are found in all types of cells and cellular compartments, and have a wide range of binding specificities and functional roles. The chaperone Grp170 is being evaluated for its potential in cancer chemotherapy due findings that indicated that this molecule prompted the immune system to recognize cancer antigens.

Flagellin is a 30,000 to 60,000 Dalton globular protein that arranges itself into a hollow cylinder to form the filament in bacterial flagellum. This protein is the principal constituent of bacterial flagellum and is present in large amounts on nearly all flagellated bacteria. Mammals often have acquired immune responses (T-cell and antibody responses) to this flagellar antigen.

Investigators at Virginia Commonwealth University (Richmond, USA) strategically incorporated a pathogen flagellin-derived, NF-kappaB-stimulating "danger signal" fragment into the large chaperone Grp170 protein that previously had shown the ability to facilitate antigen cross-presentation.

They reported in the January 18, 2013, online edition of the journal Cancer Research that this engineered chimeric molecule, which they called Flagrp170, was capable of transporting tumor antigens and concurrently inducing functional activation of dendritic cells. Injection of nonreplicating adenoviruses expressing the gene for Flagrp170 directly into tumors induced a superior antitumor response against B16 melanoma and its distant lung metastasis compared to unmodified Grp170 and flagellin. The enhanced tumor destruction was accompanied with significantly increased tumor infiltration by CD8+ cells as well as elevation of interferon-gamma and interleukin-12 levels in the tumor sites. The therapeutic efficacy of Flagrp170 and its immune stimulating activity were also confirmed in mouse prostate cancer and colon carcinoma.

"Successfully promoting antitumor immunity will help eradicate tumor cells, control cancer progression, and help prevent tumor relapse," said senior author Dr. Xiang-Yang Wang, associate professor of human and molecular genetics at Virginia Commonwealth University. "This immunotherapy has the potential to be used alone or in combination with conventional cancer treatments to develop and establish immune protection against cancer and its metastases."

"Overcoming cancer's ability to suppress the body's natural immune responses and restore or develop immunity for tumor eradication is the goal of cancer immunotherapy," said Dr. Wang. "More experiments are needed, but we are hoping Flagrp-170 may one day be used in formulating more effective therapeutic cancer vaccines."

Related Links:

Virginia Commonwealth University



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.